
Lea
rning

 D
a

ta
 Science

Lea
rning

 D
a

ta
 Science

 Sam Lau,
Joseph Gonzalez
& Deborah Nolan

Learning
Data Science
Data Wrangling, Exploration, Visualization,
and Modeling with Python

DATA SCIENCE

“This is the book I wish
we had when we first
came up with the
term data scientist
to describe what we
do. If you’re looking
to be in data science/
engineering, AI, or
machine learning, this is
where you need to start.”

—DJ Patil, PhD
first US Chief Data Scientist

Learning Data Science

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

As an aspiring data scientist, you appreciate why organizations
rely on data for important decisions—whether it’s for companies
designing websites, cities deciding how to improve services, or
scientists working to stop the spread of disease. And you want
the skills required to distill a messy pile of data into actionable
insights. We call this the data science lifecycle: the process
of collecting, wrangling, analyzing, and drawing conclusions
from data.

Learning Data Science is the first book to cover foundational
skills in both programming and statistics that encompass this
entire lifecycle. It’s aimed at those who wish to become data
scientists or who work with data scientists, and at data
analysts who wish to cross the “technical/nontechnical”
divide. If you have a basic knowledge of Python programming,
you’ll learn how to work with data using industry-standard
tools like pandas.

• Refine a question of interest to one that can be studied
with data

• Pursue data collection that may involve text processing,
web scraping, etc.

• Glean valuable insights through data cleaning, exploration,
and visualization

• Learn how to use modeling to describe the data

• Generalize findings beyond the data

Sam Lau is an assistant teaching
professor in the Halıcıoğlu Data Science
Institute at UC San Diego. Sam has a
decade of teaching experience, and
he has designed and taught flagship
data science courses at UC Berkeley
and UC San Diego.

Joey Gonzalez is an associate professor
in the EECS Department at UC Berkeley,
a member of the Berkeley AI Research
group, and a founding member of the
Berkeley RISE Lab. He also cofounded
Turi Inc. and Aqueduct, which develop
tools for data scientists.

Deborah Nolan is professor emerita of
statistics and associate dean for students
in the College of Computing, Data
Science, and Society at UC Berkeley.

US $89.99 CAN $112.99
ISBN: 978-1-098-11300-1

Praise for Learning Data Science

I helped develop and teach the UC Berkeley data science course based on Learning Data
Science. This book provides the foundational skills and concepts needed to solve

real-world data science problems.
— Fernando Pérez, UC Berkeley Professor and

Cofounder of Project Jupyter

Learning Data Science is a great introduction to the field of data science for beginners and
working professionals alike. Read it for the exciting case studies.

—Siddharth Yadav, Freelance Data Scientist

There’s not a lot of data science books that focus on exploratory data analysis and how
that segues into the real modeling process. This book does just that and should serve

anyone wanting a deep-dive in how to explore data.
—Thomas Nield, Consultant/Instructor,
Nield Consulting Group/Yawman Flight

Learning Data Science provides a fantastic, comprehensive introduction to the data
science lifecycle. It builds a strong foundation in data science principles and techniques,

enabling readers to tackle the complex problems we face each day. What truly sets this
book apart is the abundance of modern, real-world examples.

—Sona Jeswani, Machine Learning Engineer
for Google Search Ads Quality

This great book covers the whole data science pipeline, from data wrangling to
visualization to modeling. The text and (Python) code are both beautifully written.

(For example, the extensive use of pandas pipes is quite elegant, and similar in style to
R’s tidyverse.) I recommend the book for anyone who wants to get started in data science.

—Kevin Murphy, Research Scientist at Google DeepMind,
Author of Probabilistic Machine Learning (MIT Press, 2023)

Sam Lau, Joseph Gonzalez, and Deborah Nolan

Learning Data Science
Data Wrangling, Exploration, Visualization,

and Modeling with Python

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-11300-1

[LSI]

Learning Data Science
by Sam Lau, Joseph Gonzalez, and Deborah Nolan

Copyright © 2023 Sam Lau, Joseph Gonzalez, and Deborah Nolan. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Aaron Black
Development Editor: Melissa Potter
Production Editor: Katherine Tozer
Copyeditor: Audrey Doyle
Proofreader: J.M. Olejarz

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

September 2023: First Edition

Revision History for the First Release
2023-09-15: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098113001 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Data Science, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098113001

Table of Contents

Preface. xv

Part I. The Data Science Lifecycle

1. The Data Science Lifecycle. 3
The Stages of the Lifecycle 3
Examples of the Lifecycle 6
Summary 7

2. Questions and Data Scope. 9
Big Data and New Opportunities 10

Example: Google Flu Trends 10
Target Population, Access Frame, and Sample 12

Example: What Makes Members of an Online Community Active? 14
Example: Who Will Win the Election? 14
Example: How Do Environmental Hazards Relate

to an Individual’s Health? 15
Instruments and Protocols 16
Measuring Natural Phenomena 17

Example: What Is the Level of CO2 in the Air? 18
Accuracy 19

Types of Bias 20
Types of Variation 22

Summary 24

v

3. Simulation and Data Design. 27
The Urn Model 28

Sampling Designs 30
Sampling Distribution of a Statistic 32
Simulating the Sampling Distribution 33
Simulation with the Hypergeometric Distribution 35

Example: Simulating Election Poll Bias and Variance 36
The Pennsylvania Urn Model 38
An Urn Model with Bias 40
Conducting Larger Polls 41

Example: Simulating a Randomized Trial for a Vaccine 43
Scope 43
The Urn Model for Random Assignment 44

Example: Measuring Air Quality 46
Summary 49

4. Modeling with Summary Statistics. 51
The Constant Model 52
Minimizing Loss 54

Mean Absolute Error 55
Mean Squared Error 57
Choosing Loss Functions 59

Summary 60

5. Case Study: Why Is My Bus Always Late?. 63
Question and Scope 64
Data Wrangling 64
Exploring Bus Times 67
Modeling Wait Times 70
Summary 74

Part II. Rectangular Data

6. Working with Dataframes Using pandas. 79
Subsetting 80

Data Scope and Question 80
Dataframes and Indices 81
Slicing 83
Filtering Rows 86
Example: How Recently Has Luna Become a Popular Name? 89

vi | Table of Contents

Aggregating 91
Basic Group-Aggregate 92
Grouping on Multiple Columns 95
Custom Aggregation Functions 96
Pivoting 98

Joining 100
Inner Joins 101
Left, Right, and Outer Joins 103
Example: Popularity of NYT Name Categories 105

Transforming 107
Apply 107
Example: Popularity of “L” Names 109
The Price of Apply 110

How Are Dataframes Different from Other Data Representations? 111
Dataframes and Spreadsheets 111
Dataframes and Matrices 112
Dataframes and Relations 113

Summary 113

7. Working with Relations Using SQL. 115
Subsetting 115

SQL Basics: SELECT and FROM 116
What’s a Relation? 117
Slicing 118
Filtering Rows 119
Example: How Recently Has Luna Become a Popular Name? 121

Aggregating 122
Basic Group-Aggregate Using GROUP BY 123
Grouping on Multiple Columns 124
Other Aggregation Functions 125

Joining 126
Inner Joins 127
Left and Right Joins 129
Example: Popularity of NYT Name Categories 130

Transforming and Common Table Expressions 131
SQL Functions 131
Multistep Queries Using a WITH Clause 134
Example: Popularity of “L” Names 134

Summary 135

Table of Contents | vii

Part III. Understanding The Data

8. Wrangling Files. 139
Data Source Examples 140

Drug Abuse Warning Network (DAWN) Survey 140
San Francisco Restaurant Food Safety 140

File Formats 142
Delimited Format 142
Fixed-Width Format 144
Hierarchical Formats 145
Loosely Formatted Text 145

File Encoding 146
File Size 148
The Shell and Command-Line Tools 151
Table Shape and Granularity 155

Granularity of Restaurant Inspections and Violations 156
DAWN Survey Shape and Granularity 158

Summary 161

9. Wrangling Dataframes. 163
Example: Wrangling CO2 Measurements from the Mauna Loa Observatory 164

Quality Checks 167
Addressing Missing Data 170
Reshaping the Data Table 171

Quality Checks 172
Quality Based on Scope 172
Quality of Measurements and Recorded Values 173
Quality Across Related Features 174
Quality for Analysis 174
Fixing the Data or Not 175

Missing Values and Records 176
Transformations and Timestamps 178

Transforming Timestamps 179
Piping for Transformations 182

Modifying Structure 183
Example: Wrangling Restaurant Safety Violations 186

Narrowing the Focus 187
Aggregating Violations 188
Extracting Information from Violation Descriptions 190

Summary 193

viii | Table of Contents

10. Exploratory Data Analysis. 195
Feature Types 196

Example: Dog Breeds 198
Transforming Qualitative Features 203
The Importance of Feature Types 206

What to Look For in a Distribution 207
What to Look For in a Relationship 211

Two Quantitative Features 211
One Qualitative and One Quantitative Variable 212
Two Qualitative Features 214

Comparisons in Multivariate Settings 216
Guidelines for Exploration 220
Example: Sale Prices for Houses 221

Understanding Price 222
What Next? 224
Examining Other Features 225
Delving Deeper into Relationships 229
Fixing Location 230
EDA Discoveries 232

Summary 233

11. Data Visualization. 235
Choosing Scale to Reveal Structure 235

Filling the Data Region 236
Including Zero 237
Revealing Shape Through Transformations 239
Banking to Decipher Relationships 241
Revealing Relationships Through Straightening 242

Smoothing and Aggregating Data 245
Smoothing Techniques to Uncover Shape 245
Smoothing Techniques to Uncover Relationships and Trends 247
Smoothing Techniques Need Tuning 249
Reducing Distributions to Quantiles 250
When Not to Smooth 252

Facilitating Meaningful Comparisons 254
Emphasize the Important Difference 254
Ordering Groups 256
Avoid Stacking 258
Selecting a Color Palette 260
Guidelines for Comparisons in Plots 262

Incorporating the Data Design 263

Table of Contents | ix

Data Collected Over Time 263
Observational Studies 265
Unequal Sampling 266
Geographic Data 267

Adding Context 268
Example: 100m Sprint Times 269

Creating Plots Using plotly 270
Figure and Trace Objects 271
Modifying Layout 273
Plotting Functions 274
Annotations 276

Other Tools for Visualization 277
matplotlib 278
Grammar of Graphics 278

Summary 279

12. Case Study: How Accurate Are Air Quality Measurements?. 281
Question, Design, and Scope 282
Finding Collocated Sensors 284

Wrangling the List of AQS Sites 284
Wrangling the List of PurpleAir Sites 286
Matching AQS and PurpleAir Sensors 288

Wrangling and Cleaning AQS Sensor Data 290
Checking Granularity 291
Removing Unneeded Columns 292
Checking the Validity of Dates 292
Checking the Quality of PM2.5 Measurements 293

Wrangling PurpleAir Sensor Data 294
Checking the Granularity 296
Handling Missing Values 300

Exploring PurpleAir and AQS Measurements 302
Creating a Model to Correct PurpleAir Measurements 308
Summary 310

Part IV. Other Data Sources

13. Working with Text. 315
Examples of Text and Tasks 316

Convert Text into a Standard Format 316
Extract a Piece of Text to Create a Feature 316

x | Table of Contents

Transform Text into Features 317
Text Analysis 317

String Manipulation 318
Converting Text to a Standard Format with Python String Methods 318
String Methods in pandas 319
Splitting Strings to Extract Pieces of Text 320

Regular Expressions 321
Concatenation of Literals 322
Quantifiers 324
Alternation and Grouping to Create Features 326
Reference Tables 327

Text Analysis 329
Summary 334

14. Data Exchange. 335
NetCDF Data 336
JSON Data 341
HTTP 345
REST 349
XML, HTML, and XPath 353

Example: Scraping Race Times from Wikipedia 356
XPath 358
Example: Accessing Exchange Rates from the ECB 360

Summary 363

Part V. Linear Modeling

15. Linear Models. 367
Simple Linear Model 368
Example: A Simple Linear Model for Air Quality 372

Interpreting Linear Models 374
Assessing the Fit 375

Fitting the Simple Linear Model 377
Multiple Linear Model 379
Fitting the Multiple Linear Model 384
Example: Where Is the Land of Opportunity? 388

Explaining Upward Mobility Using Commute Time 389
Relating Upward Mobility Using Multiple Variables 392

Feature Engineering for Numeric Measurements 396
Feature Engineering for Categorical Measurements 400

Table of Contents | xi

Summary 407

16. Model Selection. 409
Overfitting 410

Example: Energy Consumption 410
Train-Test Split 415
Cross-Validation 419
Regularization 424
Model Bias and Variance 425
Summary 429

17. Theory for Inference and Prediction. 431
Distributions: Population, Empirical, Sampling 431
Basics of Hypothesis Testing 433

Example: A Rank Test to Compare Productivity of
Wikipedia Contributors 435

Example: A Test of Proportions for Vaccine Efficacy 439
Bootstrapping for Inference 442
Basics of Confidence Intervals 446
Basics of Prediction Intervals 450

Example: Predicting Bus Lateness 450
Example: Predicting Crab Size 451
Example: Predicting the Incremental Growth of a Crab 453

Probability for Inference and Prediction 455
Formalizing the Theory for Average Rank Statistics 456
General Properties of Random Variables 459
Probability Behind Testing and Intervals 462
Probability Behind Model Selection 465

Summary 467

18. Case Study: How to Weigh a Donkey. 471
Donkey Study Question and Scope 471
Wrangling and Transforming 472
Exploring 477
Modeling a Donkey’s Weight 481

A Loss Function for Prescribing Anesthetics 481
Fitting a Simple Linear Model 482
Fitting a Multiple Linear Model 484
Bringing Qualitative Features into the Model 485
Model Assessment 488

Summary 490

xii | Table of Contents

Part VI. Classification

19. Classification. 495
Example: Wind-Damaged Trees 496
Modeling and Classification 498

A Constant Model 498
Examining the Relationship Between Size and Windthrow 499

Modeling Proportions (and Probabilities) 501
A Logistic Model 502
Log Odds 504
Using a Logistic Curve 505

A Loss Function for the Logistic Model 505
From Probabilities to Classification 509

The Confusion Matrix 511
Precision Versus Recall 512

Summary 515

20. Numerical Optimization. 517
Gradient Descent Basics 518
Minimizing Huber Loss 520
Convex and Differentiable Loss Functions 522
Variants of Gradient Descent 524

Stochastic Gradient Descent 525
Mini-Batch Gradient Descent 525
Newton’s Method 526

Summary 527

21. Case Study: Detecting Fake News. 529
Question and Scope 530
Obtaining and Wrangling the Data 531
Exploring the Data 535

Exploring the Publishers 536
Exploring Publication Date 538
Exploring Words in Articles 540

Modeling 542
A Single-Word Model 542
Multiple-Word Model 544
Predicting with the tf-idf Transform 546

Summary 549

Table of Contents | xiii

Additional Material. 551

Data Sources. 557

Index. 561

xiv | Table of Contents

Preface

Data science is exciting work. The ability to draw insights from messy data is valuable
for all kinds of decision making across business, medicine, policy, and more. This
book, Learning Data Science, aims to prepare readers to do data science. To achieve
this, we’ve designed this book with the following special features:

Focus on the fundamentals
Technologies come and go. While we work with specific technologies in this
book, our goal is to equip readers with the fundamental building blocks of data
science. We do this by revealing how to think about data science problems and
challenges, and by covering the fundamentals behind the individual technologies.
Our aim is to serve readers even as technologies change.

Cover the entire data science lifecycle
Instead of just focusing on a single topic, like how to work with data tables or
how to apply machine learning techniques, we cover the entire data science life‐
cycle—the process of asking a question, obtaining data, understanding the data,
and understanding the world. Working through the entire lifecycle can often be
the hardest part of being a data scientist.

Use real data
To be prepared for working on real problems, we consider it essential to learn
from examples that use real data, with their warts and all. We chose the datasets
presented in this book by carefully picking from actual data analyses that have
made an impact, rather than using overly refined or synthetic data.

Apply concepts through case studies
We’ve included extended case studies throughout the book that follow or extend
analyses from other data scientists. These case studies show readers how to navi‐
gate the data science lifecycle in real settings.

xv

Combine both computational and inferential thinking
On the job, data scientists need to foresee how the decisions they make when
writing code and how the size of a dataset might affect statistical analysis. To pre‐
pare readers for their future work, Learning Data Science integrates computa‐
tional and statistical thinking. We also motivate statistical concepts through
simulation studies rather than mathematical proofs.

The text and code for this book are open source and available on GitHub.

Expected Background Knowledge
We expect readers to be proficient in Python and understand how to use built-in data
structures like lists, dictionaries, and sets; import and use functions and classes from
other packages; and write functions from scratch. We also use the numpy Python
package without introduction but don’t expect readers to have much prior experience
using it.

Readers will get more from this book if they also know a bit of probability, calculus,
and linear algebra, but we aim to explain mathematical ideas intuitively.

Organization of the Book
This book has 21 chapters, divided into six parts:

Part I (Chapters 1–5)
Part I describes what the lifecycle is, makes one full pass through the lifecycle at a
basic level, and introduces terminology that we use throughout the book. The
part concludes with a short case study about bus arrival times.

Part II (Chapters 6–7)
Part II introduces dataframes and relations and how to write code to manipulate
data using pandas and SQL.

Part III (Chapters 8–12)
Part III is all about obtaining data, discovering its traits, and spotting issues.
After understanding these concepts, a reader can take a datafile and describe the
dataset’s interesting features to someone else. This part ends with a case study
about air quality.

Part IV (Chapters 13–14)
Part IV looks at widely used alternative sources of data, like text, binary, and data
from the web.

xvi | Preface

https://github.com/DS-100/textbook/

Part V (Chapters 15–18)
Part V focuses on understanding the world using data. It covers inferential topics
like confidence intervals and hypothesis testing in addition to model fitting,
feature engineering, and model selection. This part ends with a case study about
predicting donkey weights for veterinarians in Kenya.

Part VI (Chapters 19–21)
Part VI completes our study of supervised learning with logistic regression and
optimization. It ends with a case study on predicting whether news articles make
real or fake statements.

At the end of the book, we included resources to learn more about many of the topics
this book introduces, and we provided the complete list of datasets used throughout
the book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

This element indicates a tip.

Preface | xvii

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://learningds.org.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate attribution. An attribution usually includes the title, author, publisher,
and ISBN. For example: “Learning Data Science by Sam Lau, Joseph Gonzalez, and
Deborah Nolan (O’Reilly). Copyright 2023 Sam Lau, Joseph Gonzalez, and Deborah
Nolan, 978-1-098-11300-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at bookquestions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

xviii | Preface

https://learningds.org
mailto:bookquestions%40oreilly.com
mailto:bookquestions%40oreilly.com
https://oreilly.com
https://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learning-data-science.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
This book has come about from our joint experience designing and teaching “Princi‐
ples and Techniques of Data Science,” an undergraduate course at the University of
California, Berkeley. We first taught “Data 100” in spring 2017 in response to student
demand for a second course in data science; they wanted a course that would prepare
them for advanced study in data science and for the workforce.

The thousands of students we have taught since that first offering have been an inspi‐
ration for us. We’ve also benefited from co-teaching with other instructors, including
Ani Adhikari, Andrew Bray, John DeNero, Sandrine Dudoit, Will Fithian, Joe Heller‐
stein, Josh Hug, Anthony Joseph, Scott Lee, Fernando Perez, Alvin Wan, Lisa Yan,
and Bin Yu. We especially thank Joe Hellerstein for insights around data wrangling,
Fernando Perez for encouraging us to include more complex data structures like
NetCDF, Josh Hug for the idea of the PurpleAir case study, and Duncan Temple Lang
for collaboration on an earlier version of the course. We also thank the Berkeley stu‐
dents who have been our teaching assistants, and especially mention those who have
contributed to previous versions of the book: Ananth Agarwal, Ashley Chien,
Andrew Do, Tiffany Jann, Sona Jeswani, Andrew Kim, Jun Seo Park, Allen Shen,
Katherine Yen, and Daniel Zhu.

Preface | xix

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/learning-data-science
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

A core part of this book is the many datasets that we wrangle and analyze, and we are
immensely thankful to the individuals and organizations that made their data open
and available to us. At the end of this book, we list these contributors along with the
original data sources, and related research papers, blog posts, and reports.

Lastly, we are grateful to the O’Reilly team for their work to bring this book from
class notes to publication, especially Melissa Potter, Jess Haberman, Aaron Black,
Danny Elfanbaum, and Mike Loukides. We’d also like to thank the technical reviewers
whose comments have improved the book: Sona Jeswani, Thomas Nield, Siddharth
Yadav, and Abhijit Dasgupta.

xx | Preface

PART I

The Data Science Lifecycle

CHAPTER 1

The Data Science Lifecycle

Data science is a rapidly evolving field. At the time of this writing, people are still try‐
ing to pin down exactly what data science is, what data scientists do, and what skills
data scientists should have. What we do know, though, is that data science uses a
combination of methods and principles from statistics and computer science to work
with and draw insights from data. And learning computer science and statistics in
combination makes us better data scientists. We also know that any insights we glean
need to be interpreted in the context of the problem that we are working on.

This book covers fundamental principles and skills that data scientists need to help
make all sorts of important decisions. With both technical skills and conceptual
understanding we can work on data-centric problems to, say, assess whether a vaccine
works, filter out fake news automatically, calibrate air quality sensors, and advise ana‐
lysts on policy changes.

To help you keep track of the bigger picture, we’ve organized topics around a work‐
flow that we call the data science lifecycle. In this chapter, we introduce this lifecycle.
Unlike other data science books, which tend to focus on one part of the lifecycle or
address only computational or statistical topics, we cover the entire cycle from start to
finish and consider both statistical and computational aspects together.

The Stages of the Lifecycle
Figure 1-1 shows the data science lifecycle, which is divided into four stages: Ask a
Question, Obtain Data, Understand the Data, and Understand the World. We’ve pur‐
posefully made these stages broad. In our experience, the mechanics of the lifecycle
change frequently. Computer scientists and statisticians continue to build new soft‐
ware packages and programming languages for working with data, and they develop
new methodologies that are more specialized.

3

Figure 1-1. The four high-level stages of the data science lifecycle with arrows indicating
how the stages can lead into one another

Despite these changes, we’ve found that almost every data project consists of these
four stages:

Ask a Question
Asking good questions is at the heart of data science, and recognizing different
kinds of questions guides us in our analyses. We cover four categories of ques‐
tions: descriptive, exploratory, inferential, and predictive. For example, “How
have house prices changed over time?” is descriptive in nature, whereas “Which
aspects of houses are related to sale price?” is exploratory. Narrowing down a
broad question into one that can be answered with data is a key element of this
first stage in the lifecycle. It can involve consulting the people participating in a
study, figuring out how to measure something, and designing data collection pro‐
tocols. A clear and focused research question helps us determine the data we
need, the patterns to look for, and how to interpret results. It can also help us
refine our question, recognize the type of question being asked, and plan the data
collection phase of the lifecycle.

Obtain Data
When data are expensive and hard to gather and when our goal is to generalize
from the data to the world, we aim to define precise protocols for collecting the
data. Other times, data are cheap and easily accessed. This is especially true for
online data sources. For example, Twitter lets people quickly download millions
of data points. When data are plentiful, we can start an analysis by obtaining and
exploring the data, and then honing a research question. In both situations, most

4 | Chapter 1: The Data Science Lifecycle

https://oreil.ly/WvUhe

data have missing or unusual values and other anomalies that we need to account
for. No matter the source, we need to check the data quality. Considering the
scope of the data is equally important; for example, we identify how representa‐
tive the data are and look for potential sources of bias in the collection process.
These considerations help us determine how much faith we can place in our
findings. And, typically, we must manipulate the data before we can analyze it
more formally. We may need to modify structure, clean data values, and trans‐
form measurements to prepare for analysis.

Understand the Data
After obtaining and preparing data, we want to carefully examine them, and
exploratory data analysis is often key. In our explorations, we make plots to
uncover interesting patterns and summarize the data visually. We also continue
to look for problems with the data. As we search for patterns and trends, we use
summary statistics and build statistical models, like linear and logistic regression.
In our experience, this stage of the lifecycle is highly iterative. Understanding the
data can also lead us back to earlier stages in the data science lifecycle. We may
find that we need to modify or redo the data cleaning and manipulation, acquire
more data to supplement our analysis, or refine our research question given the
limitations of the data. The descriptive and exploratory analyses that we carry out
in this stage may adequately answer our question, or we may need to go on to the
next stage in order to make generalizations beyond our data.

Understand the World
When our goals are purely descriptive or exploratory, the analysis ends at the
Understand the Data stage of the lifecycle. At other times, we aim to quantify
how well the trends we find generalize beyond our data. We may want to use a
model that we have fit to our data to make inferences about the world or give
predictions for future observations. To draw inferences from a sample to a popu‐
lation, we use statistical techniques like A/B testing and confidence intervals.
And to make predictions for future observations, we create prediction intervals
and use train-test splits of the data.

For each stage of the lifecycle, we explain theoretical concepts, introduce data tech‐
nologies and statistical methodologies, and show how they work in practical exam‐
ples. Throughout, we rely on authentic data and analyses by other data scientists, not
made-up data, so you can learn how to perform your own data acquisition, cleaning,
exploration, and formal analyses, and draw sound conclusions. Each chapter in this
book tends to focus on one stage of the data science lifecycle, but we also include
chapters with case studies that demonstrate the full lifecycle.

The Stages of the Lifecycle | 5

Understanding the differences between exploration, inference, pre‐
diction, and causation can be a challenge. We can easily slip into
confusing a correlation found in data with a causal relationship.
For example, an exploratory or inferential analysis might look for
correlations in response to the question “Do people who have a
greater exposure to air pollution have a higher rate of lung dis‐
ease?” Whereas a causal question might ask “Does giving an award
to a Wikipedia contributor increase productivity?” We typically
cannot answer causal questions unless we have a randomized
experiment (or approximate one). We point out these important
distinctions throughout the book.

Examples of the Lifecycle
Several case studies that address the entire data science lifecycle are placed through‐
out this book. These cases serve double duty. They focus on one stage in the lifecycle
to provide a specific example of the topics in the part of the book where they are loca‐
ted, and they also demonstrate the entire cycle.

The focus of Chapter 5 is on the interplay between a question of interest and how
data can be used to answer the question. The simple question “Why is my bus always
late?” provides a rich case study that is basic enough for the beginning data scientist
to track the stages of the lifecycle, and yet nuanced enough to demonstrate how we
apply both statistical and computational thinking to answer the question. In this case
study, we build a simulation study to inform us about the distribution of wait times
for riders. And we fit a simple model to summarize the wait times with a statistic.
This case study also demonstrates how, as a data scientist, you can collect your own
data to answer questions that interest you.

Chapter 12 studies the accuracy of mass-market air sensors that are used across the
United States. We devise a way to leverage data from highly accurate sensors main‐
tained by the Environmental Protection Agency to improve readings from less expen‐
sive sensors. This case study shows how crowdsourced, open data can be improved
with data from rigorously maintained, precise, government-monitored equipment. In
the process, we focus on cleaning and merging data from multiple sources, but we
also fit models to adjust and improve air quality measurements.

In Chapter 18 our focus is on model building and prediction. But we cover the full
lifecycle and see how the question of interest impacts the model that we build. Our
aim is to enable veterinarians in rural Kenya, who have no access to a scale to weigh a
donkey, to prescribe medication for a sick animal. As we learn about the design of the
study, clean the data, and balance simplicity with accuracy, we assess the predictive
capabilities of our model and show how scientists can partner with people facing
practical problems and assist them with solutions.

6 | Chapter 1: The Data Science Lifecycle

Finally, in Chapter 21 we examine hand-classified news stories in an effort to algo‐
rithmically differentiate fake news from real news. In this case study, we again see
how readily accessible information creates amazing opportunities for data scientists
to develop new technologies and investigate today’s important problems. These data
have been scraped from news stories on the web and classified as fake or real news by
people reading the stories. We also see how data scientists thinking creatively can take
general information, such as the content of a news article, and transform it into ana‐
lyzable data to address topical questions.

Summary
The data science lifecycle provides an organizing structure for this book. We keep the
lifecycle in mind as we work with many datasets from a wide range of sources,
including science, medicine, politics, social media, and government. The first time we
use a dataset, we provide the context in which the data were collected, the question of
interest in examining the data, and descriptions needed to understand the data. In
this way, we aim to practice good data science throughout the book.

The first stage of the lifecycle—asking a question—is often seen in books as a ques‐
tion that requires an application of a technique to get a number, such as “What’s the
p-value for this A/B test?” Or a vague question that is often seen in practice, like “Can
we restore the American Dream?” Answering the first sort of question gives little
practice in developing a research question. Answering the second is hard to do
without guidance on how to turn a general area of interest into a question that can be
answered with data. The interplay between asking a question and understanding the
limitations of data to answer it is the topic of the next chapter.

Summary | 7

1 The notion of “scope” has been adapted from Joseph Hellerstein’s course notes on scope, temporality, and
faithfulness.

CHAPTER 2

Questions and Data Scope

As data scientists, we use data to answer questions, and the quality of the data collec‐
tion process can significantly impact the validity and accuracy of the data, the
strength of the conclusions we draw from an analysis, and the decisions we make. In
this chapter, we describe a general approach for understanding data collection and
evaluating the usefulness of the data in addressing the question of interest. Ideally, we
aim for data to be representative of the phenomenon that we are studying, whether
that phenomenon is a population characteristic, a physical model, or some type of
social behavior. Typically, our data do not contain complete information (the scope is
restricted in some way), yet we want to use the data to accurately describe a popula‐
tion, estimate a scientific quantity, infer the form of a relationship between features,
or predict future outcomes. In all of these situations, if our data are not representative
of the object of our study, then our conclusions can be limited, possibly misleading,
or even wrong.

To motivate the need to think about these issues, we begin with an example of the
power of big data and what can go wrong. We then provide a framework that can
help you connect the goal of your study (your question) with the data collection pro‐
cess. We refer to this as the data scope,1 and we provide terminology to help describe
data scope, along with examples from surveys, government data, scientific instru‐
ments, and online resources. Later in this chapter, we consider what it means for data
to be accurate. There, we introduce different forms of bias and variation, and describe
situations where they can arise. Throughout, the examples cover the spectrum of the
sorts of data that you may be using as a data scientist; these examples are from sci‐
ence, politics, public health, and online communities.

9

https://oreil.ly/VrByF

Big Data and New Opportunities
The tremendous increase in openly available data has created new roles and opportu‐
nities in data science. For example, data journalists look for interesting stories in data
much like how traditional beat reporters hunt for news stories. The lifecycle for the
data journalist begins with the search for existing data that might have an interesting
story, rather than beginning with a research question and figuring out how to collect
new or use existing data to address the question.

Citizen science projects are another example. They engage many people (and instru‐
ments) in data collection. Collectively, these data are made available to researchers
who organize the project, and often they are made available in repositories for the
general public to further investigate.

The availability of administrative and organizational data creates other opportunities.
Researchers can link data collected from scientific studies with, say, medical data that
have been collected for health-care purposes; these administrative data have been col‐
lected for reasons that don’t directly stem from the question of interest, but they can
be useful in other settings. Such linkages can help data scientists expand the possibili‐
ties of their analyses and cross-check the quality of their data. In addition, found data
can include digital traces, such as your web-browsing activity, your posts on social
media, and your online network of friends and acquaintances, and they can be quite
complex.

When we have large amounts of administrative data or expansive digital traces, it can
be tempting to treat them as more definitive than data collected from traditional,
smaller research studies. We might even consider these large datasets to be a replace‐
ment for scientific studies and essentially a census. This overreach is referred to as
“big data hubris”. Data with a large scope does not mean that we can ignore founda‐
tional issues of how representative the data are, nor can we ignore issues with meas‐
urement, dependency, and reliability. (And it can be easy to discover meaningless or
nonsensical relationships just by coincidence.) One well-known example is the Goo‐
gle Flu Trends tracking system.

Example: Google Flu Trends
Digital epidemiology, a new subfield of epidemiology, leverages data generated out‐
side the public health system to study patterns of disease and health dynamics in pop‐
ulations. The Google Flu Trends (GFT) tracking system was one of the earliest
examples of digital epidemiology. In 2007, researchers found that counting the
searches people made for flu-related terms could accurately estimate the number of
flu cases. This apparent success made headlines, and many researchers became exci‐
ted about the possibilities of big data. However, GFT did not live up to expectations
and was abandoned in 2015.

10 | Chapter 2: Questions and Data Scope

https://doi.org/10.1126/science.1248506
https://oreil.ly/i2PVM

What went wrong? After all, GFT used millions of digital traces from online queries
for terms related to influenza to predict flu activity. Despite initial success, in the
2011–2012 flu season, Google’s data scientists found that GFT was not a substitute for
the more traditional surveillance reports of three-week-old counts collected by the
US Centers for Disease Control and Prevention (CDC) from laboratories across the
country. In comparison, GFT overestimated the CDC numbers for 100 out of 108
weeks. Week after week, GFT came in too high for the cases of influenza, even though
it was based on big data:

From weeks 412 to 519 in this plot, GFT (solid line) overestimated the actual CDC
reports (dashed line) 100 times. Also plotted here are predictions from a model based
on three-week-old CDC data and seasonal trends (dotted line), which follows the
actuals more closely than GFT.

Data scientists found that a simple model built from past CDC reports that used
three-week-old CDC data and seasonal trends did a better job of predicting flu preva‐
lence than GFT. GFT overlooked considerable information that can be extracted by
basic statistical methods. This does not mean that big data captured from online
activity is useless. In fact, researchers have shown that the combination of GFT data
with CDC data can substantially improve both GFT predictions and the CDC-based
model. It is often the case that combining different approaches leads to improvements
over individual methods.

The GFT example shows us that even when we have tremendous amounts of infor‐
mation, the connections between the data and the question being asked are para‐
mount. Understanding this framework can help us avoid answering the wrong
question, applying inappropriate methods to the data, and overstating our findings.

Big Data and New Opportunities | 11

https://oreil.ly/Qlw6u

In the age of big data, we are tempted to collect more and more
data to answer a question precisely. After all, a census gives us per‐
fect information, so shouldn’t big data be nearly perfect? Unfortu‐
nately, this is often not the case, especially with administrative data
and digital traces. The inaccessibility of a small fraction of the peo‐
ple you want to study (see the 2016 election upset in Chapter 3) or
the measurement process itself (as in this GFT example) can lead to
poor predictions. It is important to consider the scope of the data
as it relates to the question under investigation.

A key factor to keep in mind is the scope of the data. Scope includes considering the
population we want to study, how to access information about that population, and
what we are actually measuring. Thinking through these points can help us see
potential gaps in our approach. We investigate this in the next section.

Target Population, Access Frame, and Sample
An important initial step in the data lifecycle is to express the question of interest in
the context of the subject area and consider the connection between the question and
the data collected to answer that question. It’s a good practice to do this before even
thinking about the analysis or modeling steps because it may uncover a disconnect
where the question of interest cannot be directly addressed by the data. As part of
making the connection between the data collection process and the topic of investiga‐
tion, we identify the population, the means to access the population, instruments of
measurement, and additional protocols used in the collection process. These con‐
cepts—the target population, the access frame, and the sample—help us understand
the scope of the data, whether we aim to gain knowledge about a population, scien‐
tific quantity, physical model, social behavior, or something else:

Target population
The target population consists of the collection of elements comprising the popu‐
lation that you ultimately intend to describe and draw conclusions about. The
element may be a person in a group of people, a voter in an election, a tweet from
a collection of tweets, or a county in a state. We sometimes call an element a unit
or an atom.

Access frame
The access frame is the collection of elements that are accessible to you for meas‐
urement and observation. These are the units through which you can study the
target population. Ideally, the access frame and population are perfectly aligned,
meaning they consist of the exact same elements. However, the units in an access
frame may be only a subset of the target population; additionally, the frame may
include units that don’t belong to the population. For example, to find out how a
voter intends to vote in an election, you might call people by phone. Someone

12 | Chapter 2: Questions and Data Scope

you call may not be a voter, so they are in your frame but not in the population.
On the other hand, a voter who never answers a call from an unknown number
can’t be reached, so they are in the population but not in your frame.

Sample
The sample is the subset of units taken from the access frame to observe and
measure. The sample gives you the data to analyze in order to make predictions
or generalizations about the population of interest. When resources have been
put into following up with nonrespondents and tracking down hard-to-find
units, a small sample can be more effective than a large sample or an attempt at a
census where subsets of the population have been overlooked.

The contents of the access frame, in comparison to the target population, and the
method used to select units from the frame to be in the sample are important factors
in determining whether or not the data can be considered representative of the target
population. If the access frame is not representative of the target population, then the
data from the sample is most likely not representative either. And if the units are sam‐
pled in a biased manner, problems with representativeness also arise.

You will also want to consider time and place in the data scope. For example, the
effectiveness of a drug trial tested in one part of the world where a disease is raging
might not compare favorably with a trial in a different part of the world where back‐
ground infection rates are lower (see Chapter 3). Additionally, data collected for the
purpose of studying changes over time, like with the monthly measurements of car‐
bon dioxide (CO2) in the atmosphere (see Chapter 9) and the weekly reporting of
Google searches for predicting flu trends, have a temporal structure that we need to
be mindful of as we examine the data. At other times, there might be spatial patterns
in the data. For example, the environmental health data, described later in this sec‐
tion, are reported for each census tract in the State of California, and we might make
maps to look for spatial correlations.

And if you didn’t collect the data, you will want to consider who did and for what
purpose. This is especially relevant now since more data is passively collected instead
of collected with a specific goal in mind. Taking a hard look at found data and asking
yourself whether and how these data might be used to address your question can save
you from making a fruitless analysis or drawing inappropriate conclusions.

For the examples in the following subsections, we begin with a general question, nar‐
row it to one that can be answered with data, and in doing so, identify the target pop‐
ulation, access frame, and sample. These concepts are represented by circles and
rectangles in diagrams, and the configuration of the overlap of these shapes helps
reveal key aspects of the scope. Also in each example, we describe relevant temporal
and spatial features of the data scope.

Target Population, Access Frame, and Sample | 13

Example: What Makes Members of an Online Community Active?
Content on Wikipedia is written and edited by volunteers who belong to the Wikipe‐
dia community. This online community is crucial to the success and vitality of Wiki‐
pedia. In trying to understand how to incentivize members of online communities,
researchers carried out an experiment with Wikipedia contributors as subjects. A
narrowed version of the general question asks: do awards increase the activity of
Wikipedia contributors? For this experiment, the target population is the collection of
top, active contributors—the 1% most active contributors to Wikipedia in the month
before the start of the study. The access frame eliminated anyone in the population
who had received an incentive (award) that month. The access frame purposely
excluded some of the contributors in the population because the researchers wanted
to measure the impact of an incentive, and those who had already received one incen‐
tive might behave differently (see Figure 2-1).

Figure 2-1. Representation of scope in the Wikipedia experiment

The sample is a randomly selected set of 200 contributors from the frame. The con‐
tributors were observed for 90 days, and digital traces of their activities on Wikipedia
were collected. Notice that the contributor population is not static; there is regular
turnover. In the month prior to the start of the study, more than 144,000 volunteers
produced content for Wikipedia. Selecting top contributors from among this group
limits the generalizability of the findings, but given the size of the group of top con‐
tributors, if they can be influenced by an informal reward to maintain or increase
their contributions, this is still a valuable finding.

In many experiments and studies, we don’t have the ability to include all population
units in the frame. It is often the case that the access frame consists of volunteers who
are willing to join the study/experiment.

Example: Who Will Win the Election?
The outcome of the US presidential election in 2016 took many people and many
pollsters by surprise. Most preelection polls predicted Hillary Clinton would beat
Donald Trump. Political polling is a type of public opinion survey held prior to an
election that attempts to gauge whom people will vote for. Since opinions change over

14 | Chapter 2: Questions and Data Scope

https://oreil.ly/j74rl

time, the focus is reduced to a “horse race” question, where respondents are asked
whom they would vote for in a head-to-head race if the election were tomorrow: can‐
didate A or candidate B.

Polls are conducted regularly throughout the presidential campaign, and as election
day approaches, we expect the polls to get better at predicting the outcome as prefer‐
ences stabilize. Polls are also typically conducted statewide and later combined to
make predictions for the overall winner. For these reasons, the timing and location of
a poll matters. The pollster matters too; some have consistently been closer to the
mark than others.

In these preelection surveys, the target population consists of those who will vote in
the election, which in this example was the 2016 US presidential election. However,
pollsters can only guess at whether someone will vote in the election, so the access
frame consists of those deemed to be likely voters (this is usually based on past voting
records, but other factors may also be used). And since people are contacted by
phone, the access frame is limited to those who have a landline or mobile phone. The
sample consists of those people in the frame who are chosen according to a random
dialing scheme (see Figure 2-2).

Figure 2-2. Representation of scope in the 2016 presidential election survey

In Chapter 3, we discuss the impact on the election predictions of people’s unwilling‐
ness to answer their phone or participate in the poll.

Example: How Do Environmental Hazards Relate
to an Individual’s Health?
To address this question, the California Environmental Protection Agency (CalEPA),
the California Office of Environmental Health Hazard Assessment (OEHHA), and
the public developed the CalEnviroScreen project. The project studies connections
between population health and environmental pollution in California communities
using data collected from several sources that include demographic summaries from
the US census, health statistics from the California Department of Health Care Access

Target Population, Access Frame, and Sample | 15

https://oreil.ly/iHApH
https://oreil.ly/qeVD0

and Information, and pollution measurements from air monitoring stations around
the state maintained by the California Air Resources Board.

Ideally, we want to study the people of California and assess the impact of these envi‐
ronmental hazards on an individual’s health. However, in this situation, the data can
only be obtained at the level of a census tract. The access frame consists of groups of
residents living in the same census tract. So the units in the frame are census tracts
and the sample is a census—all of the tracts—since data are provided for all of the
tracts in the state (see Figure 2-3).

Figure 2-3. Scope of the CalEnviroScreen project; the grid in the access frame represents
the census tracts

Unfortunately, we cannot disaggregate the information in a tract to examine an indi‐
vidual person. This aggregation impacts the questions we can address and the conclu‐
sions that we can draw. For example, we can ask questions about the relation between
rates of hospitalizations due to asthma and air quality in California communities. But
we can’t answer the original question posed about an individual’s health.

These examples have demonstrated possible configurations for a target, access frame,
and sample. When a frame doesn’t reach everyone, we should consider how this miss‐
ing information might impact our findings. Similarly, we ask what might happen
when a frame includes those not in the population. Additionally, the techniques for
drawing the sample can affect how representative the sample is of the population.
When you think about generalizing your data findings, you also want to consider the
quality of the instruments and procedures used to collect the data. If your sample is a
census that matches your target, but the information is poorly collected, then your
findings will be of little value. This is the topic of the next section.

Instruments and Protocols
When we consider the scope of the data, we also consider the instrument being used
to take the measurements and the procedure for taking measurements, which we call
the protocol. For a survey, the instrument is typically a questionnaire that an individ‐
ual in the sample answers. The protocol for a survey includes how the sample is
chosen, how nonrespondents are followed up on, interviewer training, protections
for confidentiality, and so on.

16 | Chapter 2: Questions and Data Scope

Good instruments and protocols are important to all kinds of data collection. If we
want to measure a natural phenomenon, such as carbon dioxide in the atmosphere,
we need to quantify the accuracy of the instrument. The protocol for calibrating the
instrument and taking measurements is vital to obtaining accurate measurements.
Instruments can go out of alignment and measurements can drift over time, leading
to poor, highly inaccurate measurements.

Protocols are also critical in experiments. Ideally, any factor that can influence the
outcome of the experiment is controlled. For example, temperature, time of day, con‐
fidentiality of a medical record, and even the order in which measurements are taken
need to be consistent to rule out potential effects from these factors getting in the
way.

With digital traces, the algorithms used to support online activity are dynamic and
continually reengineered. For example, Google’s search algorithms are continually
tweaked to improve user service and advertising revenue. Changes to the search algo‐
rithms can impact the data generated from the searches, which in turn impact sys‐
tems built from these data, such as the Google Flu Trends tracking system. This
changing environment can make it untenable to maintain data collection protocols
and difficult to replicate findings.

Many data science projects involve linking data together from multiple sources. Each
source should be examined through this data-scope construct, and any difference
across sources should be considered. Additionally, matching algorithms used to com‐
bine data from multiple sources need to be clearly understood so that populations
and frames from the sources can be compared.

Measurements from an instrument taken to study a natural phenomenon can be cast
in the scope diagram of a target, access frame, and sample. This approach is helpful in
understanding the instrument’s accuracy.

Measuring Natural Phenomena
The scope diagram introduced for observing a target population can be extended to
the situation where we want to measure a quantity, such as a particle count in the air,
the age of a fossil, or the speed of light. In these cases, we consider the quantity we
want to measure as an unknown exact value. (This unknown value is often referred to
as a parameter.) We can adapt our scope diagram to this setting: we shrink the target
to a point that represents the unknown; the instrument’s accuracy acts as the access
frame; and the sample consists of the measurements taken by the instrument. You
might think of the frame as a dartboard, where the instrument is the person throwing
the darts, and the darts land within the circle, scattered around the bullseye. The
scatter of darts corresponds to the measurements taken by the instrument. The target
point is not seen by the dart thrower, but ideally it coincides with the bullseye.

Measuring Natural Phenomena | 17

To illustrate the concept of measurement error and its connection to sampling error,
we examine the problem of measuring CO2 levels in the air.

Example: What Is the Level of CO2 in the Air?
CO2 is an important signal of global warming because it traps heat in the Earth’s
atmosphere. Without CO2, the Earth would be impossibly cold, but it’s a delicate bal‐
ance. An increase in CO2 drives global warming and threatens our planet’s climate. To
address this question, CO2 concentrations have been monitored at Mauna Loa
Observatory since 1958. These data offer a crucial benchmark for understanding the
threat of global warming.

When thinking about the scope of the data, we consider the location and time of data
collection. Scientists chose to measure CO2 on the Mauna Loa volcano because they
wanted a place where they could measure the background level of CO2 in the air.
Mauna Loa is in the Pacific Ocean, far away from pollution sources, and the observa‐
tory is high up on a mountain surrounded by bare lava, away from plants that remove
CO2 from the air.

It’s important that the instrument measuring CO2 is as accurate as possible. Rigorous
protocols are in place to keep the instrument in top condition. For example, samples
of air are routinely measured at Mauna Loa by different types of equipment, and
other samples are sent off-site to a laboratory for more accurate measurement. These
measurements help determine the accuracy of the instrument. In addition, a refer‐
ence gas is measured for 5 minutes every hour, and two other reference gases are
measured for 15 minutes every day. These reference gases have known CO2 levels. A
comparison of the measured concentrations against the known values helps identify
bias in the instrument.

While the CO2 in background air is relatively steady at Mauna Loa, the five-minute
average concentrations that are measured in any hour deviate from the hourly aver‐
age. These deviations reflect the accuracy of the instrument and variation in airflow.

The scope for data collection can be summarized as follows: at this particular location
(high up on Mauna Loa) during a particular one-hour period, there is a true back‐
ground concentration of CO2; this is our target (see Figure 2-4). The instrument takes
measurements and reports five-minute averages. These readings form a sample con‐
tained in the access frame, the dartboard. If the instrument is working properly, the
bullseye coincides with the target (the one-hour average concentration of CO2) and
the measurements are centered on the bullseye, with deviations of about 0.30 parts
per million (ppm). The measurement of CO2 is the number of CO2 molecules per 1
million molecules of dry air, so the unit of measurement is ppm.

18 | Chapter 2: Questions and Data Scope

https://oreil.ly/HpqFr
https://oreil.ly/HpqFr
https://oreil.ly/r_Da9
https://oreil.ly/r_Da9

Figure 2-4. The access frame represents the accuracy of the instrument; the star repre‐
sents the true value of interest

We continue the dartboard analogy in the next section to introduce the concepts of
bias and variation, describe common ways in which a sample might not be represen‐
tative of the population, and draw connections between accuracy and protocol.

Accuracy
In a census, the access frame matches the population, and the sample captures the
entire population. In this situation, if we administer a well-designed questionnaire,
then we have complete and accurate information on the population, and the scope is
perfect. Similarly, in measuring CO2 concentrations in the atmosphere, if our instru‐
ment has perfect accuracy and is properly used, then we can measure the exact value
of the CO2 concentration (ignoring air fluctuations). These situations are rare, if not
impossible. In most settings, we need to quantify the accuracy of our measurements
in order to generalize our findings to the unobserved. For example, we often use the
sample to estimate an average value for a population, infer the value of a scientific
unknown from measurements, or predict the behavior of a new individual. In each of
these settings, we also want a quantifiable degree of accuracy. We want to know how
close our estimates, inferences, and predictions are to the truth.

The analogy of darts thrown at a dartboard that was introduced earlier can be useful
in understanding accuracy. We divide accuracy into two basic parts: bias and precision
(also known as variation). Our goal is for the darts to hit the bullseye on the dart‐
board and for the bullseye to line up with the unseen target. The spray of the darts on
the board represents the precision in our measurements, and the gap from the bulls‐
eye to the unknown value that we are targeting represents the bias.

Figure 2-5 shows combinations of low and high bias and precision. In each of these
diagrams, the dots represent the measurements taken, and the star represents the

Accuracy | 19

true, unknown parameter value. The dots form a scattershot within the access frame,
represented by the dartboard. When the bullseye of the access frame is roughly cen‐
tered on the star (top row), the measurements are scattered around the value of inter‐
est and bias is low. The larger dartboards (on the right) indicate a wider spread (lower
precision) in the measurements.

Figure 2-5. Combinations of low and high measurement bias and precision

Representative data puts us in the top row of the diagram, where there is low bias,
meaning that the unknown target aligns with the bullseye. Ideally, our instruments
and protocols put us in the upper-left part of the diagram, where the variation is also
low. The pattern of points in the bottom row systematically misses the targeted value.
Taking larger samples will not correct this bias.

Types of Bias
Bias comes in many forms. We describe some classic types here and connect them to
our target-access-sample framework:

Coverage bias
Occurs when the access frame does not include everyone in the target popula‐
tion. For example, a survey based on phone calls cannot reach those without a

20 | Chapter 2: Questions and Data Scope

phone. In this situation, those who cannot be reached may differ in important
ways from those in the access frame.

Selection bias
Arises when the mechanism used to choose units for the sample tends to select
certain units more often than they should be selected. As an example, a conve‐
nience sample chooses the units that are most easily available. Problems can arise
when those who are easy to reach differ in important ways from those who are
harder to reach. As another example, observational studies and experiments
often rely on volunteers (people who choose to participate), and this self-
selection has the potential for bias if the volunteers differ from the target popula‐
tion in important ways.

Nonresponse bias
Comes in two forms: unit and item. Unit nonresponse happens when someone
selected for a sample is unwilling to participate (they may never answer a phone
call from an unknown caller). Item nonresponse occurs when, say, someone
answers the phone but refuses to respond to a particular survey question. Non‐
response can lead to bias if those who choose not to respond are systematically
different from those who choose to respond.

Measurement bias
Happens when an instrument systematically misses the target in one direction.
For example, low humidity can systematically give us incorrectly high measure‐
ments of air pollution. In addition, measurement devices can become unstable
and drift over time and so produce systematic errors. In surveys, measurement
bias can arise when questions are confusingly worded or leading, or when
respondents may not be comfortable answering honestly.

Each of these types of bias can lead to situations where the data are not centered on
the unknown targeted value. Often, we cannot assess the potential magnitude of the
bias, since little to no information is available on those who are outside the access
frame, less likely to be selected for the sample, or disinclined to respond. Protocols
are key to reducing these sources of bias. Chance mechanisms to select a sample from
the frame or to assign units to experimental conditions can eliminate selection bias. A
nonresponse follow-up protocol to encourage participation can reduce nonresponse
bias. A pilot survey can improve question wording and so reduce measurement bias.
Procedures to calibrate instruments and protocols to take measurements in, say, ran‐
dom order can reduce measurement bias.

In the 2016 US presidential election, nonresponse bias and measurement bias were
key factors in the inaccurate predictions of the winner. Nearly all voter polls leading
up to the election predicted Clinton a winner over Trump. Trump’s upset victory
came as a surprise. After the election, many polling experts attempted to diagnose

Accuracy | 21

where things went wrong in the polls. The American Association for Public Opinion
Research found that the predictions were flawed for two key reasons:

• College-educated voters were overrepresented. College-educated voters are more
likely to participate in surveys than those with less education, and in 2016 they
were more likely to support Clinton. Higher response rates from more highly
educated voters biased the sample and overestimated support for Clinton.

• Voters were undecided or changed their preferences a few days before the elec‐
tion. Since a poll is static and can only directly measure current beliefs, it cannot
reflect a shift in attitudes.

It’s difficult to figure out whether people held back their preference or changed their
preference and how large a bias this created. However, exit polls have helped polling
experts understand what happened after the fact. They indicate that in battleground
states, such as Michigan, many voters made their choice in the final week of the cam‐
paign, and that group went for Trump by a wide margin.

Bias does not need to be avoided under all circumstances. If an instrument is highly
precise (low variance) and has a small bias, then that instrument might be preferable
to another with higher variance and no bias. As an example, biased studies are poten‐
tially useful to pilot a survey instrument or to capture useful information for the
design of a larger study. Many times we can at best recruit volunteers for a study.
Given this limitation, it can still be useful to enroll these volunteers in the study and
use random assignment to split them into treatment groups. That’s the idea behind
randomized controlled experiments.

Whether or not bias is present, data typically also exhibit variation. Variation can be
introduced purposely by using a chance mechanism to select a sample, and it can
occur naturally through an instrument’s precision. In the next section, we identify
three common sources of variation.

Types of Variation
The following types of variation results from a chance mechanism and have the
advantage of being quantifiable:

Sampling variation
Results from using chance to select a sample. In this case, we can, in principle,
compute the chance that a particular collection of elements is selected for the
sample.

Assignment variation
Occurs in a controlled experiment when we assign units at random to treatment
groups. In this situation, if we split the units up differently, then we can get

22 | Chapter 2: Questions and Data Scope

https://oreil.ly/uPDlR
https://oreil.ly/uPDlR
https://oreil.ly/K4BvY
https://oreil.ly/K4BvY

different results from the experiment. This assignment process allows us to com‐
pute the chance of a particular group assignment.

Measurement error
Results from the measurement process. If the instrument used for measurement
has no drift or bias and a reliable distribution of errors, then when we take multi‐
ple measurements on the same object, we get random variations in measure‐
ments that are centered on the truth.

The urn model is a simple abstraction that can be helpful for understanding variation.
This model sets up a container (an urn, which is like a vase or a bucket) full of identi‐
cal marbles that have been labeled, and we use the simple action of drawing marbles
from the urn to reason about sampling schemes, randomized controlled experiments,
and measurement error. For each of these types of variation, the urn model helps us
estimate the size of the variation using either probability or simulation (see Chap‐
ter 3). The example of selecting Wikipedia contributors to receive an informal award
provides two examples of the urn model.

Recall the Wikipedia experiment, where 200 contributors were selected at random
from 1,440 top contributors. These 200 contributors were then split, again at random,
into two groups of 100 each. One group received an informal award and the other
didn’t. Here’s how we use the urn model to characterize this process of selection and
splitting:

1. Imagine an urn filled with 1,440 marbles that are identical in shape and size, and
written on each marble is one of the 1,440 Wikipedia usernames. (This is the
access frame.)

2. Mix the marbles in the urn really well, select one marble, and set it aside.
3. Repeat the mixing and selecting of the marbles to obtain 200 marbles.

The marbles drawn form the sample. Next, to determine which of the 200 contribu‐
tors receive awards, we work with another urn:

1. In a second urn, put in the 200 marbles from the preceding sample.
2. Mix these marbles well, select one marble, and set it aside.
3. Repeat, choosing 100 marbles. That is, choose marbles one at a time, mixing in

between, and setting the chosen marble aside.

The 100 drawn marbles are assigned to the treatment group and correspond to the
contributors who receive an award. The 100 left in the urn form the control group
and receive no award.

Both the selection of the sample and the choice of award recipients use a chance
mechanism. If we were to repeat the first sampling activity again, returning all 1,440

Accuracy | 23

marbles to the original urn, then we would most likely get a different sample. This
variation is the source of sampling variation. Likewise, if we were to repeat the ran‐
dom assignment process again (keeping the sample of 200 unchanged), then we
would get a different treatment group. Assignment variation arises from this second
chance process.

The Wikipedia experiment provided an example of both sampling and assignment
variation. In both cases, the researcher imposed a chance mechanism on the data col‐
lection process. Measurement error can at times also be considered a chance process
that follows an urn model. For example, we can characterize the measurement error
of the CO2 monitor at Mauna Loa in this way.

If we can draw an accurate analogy between variation in the data and the urn model,
the urn model provides us the tools to estimate the size of the variation (see Chap‐
ter 3). This is highly desirable because we can give concrete values for the variation in
our data. However, it’s vital to confirm that the urn model is a reasonable depiction of
the source of variation. Otherwise, our claims of accuracy can be seriously flawed. We
need to know as much as possible about data scope, including instruments and proto‐
cols and chance mechanisms used in data collection, to apply these urn models.

Summary
No matter the kind of data you are working with, before diving into cleaning, explo‐
ration, and analysis, take a moment to look into the data’s source. If you didn’t collect
the data, ask yourself:

• Who collected the data?
• Why were the data collected?

Answers to these questions can help determine whether these found data can be used
to address the question of interest to you.

Consider the scope of the data. Questions about the temporal and spatial aspects of
data collection can provide valuable insights:

• When were the data collected?
• Where were the data collected?

Answers to these questions help you determine whether your findings are relevant to
the situation that interests you, or whether your situation may not be comparable to
this other place and time.

24 | Chapter 2: Questions and Data Scope

Core to the notion of scope are answers to the following questions:

• What is the target population (or unknown parameter value)?
• How was the target accessed?
• What methods were used to select samples/take measurements?
• What instruments were used and how were they calibrated?

Answering as many of these questions as possible can give you valuable insights as to
how much trust you can place in your findings and whether you can generalize from
them.

This chapter provided you with terminology and a framework for thinking about and
answering these questions. The chapter also outlined ways to identify possible sour‐
ces of bias and variance that can impact the accuracy of your findings. To help you
reason about bias and variance, we introduced the following diagrams and notions:

• Scope diagram to indicate the overlap between target population, access frame,
and sample

• Dartboard to describe an instrument’s bias and variance
• Urn model for situations when a chance mechanism has been used to select a

sample from an access frame, divide a group into experimental treatment groups,
or take measurements from a well-calibrated instrument

These diagrams and models attempt to boil down key concepts that are required to
understand how to identify limitations and judge the usefulness of your data in
answering your question. Chapter 3 continues the development of the urn model to
more formally quantify accuracy and design simulation studies.

Summary | 25

CHAPTER 3

Simulation and Data Design

In this chapter, we develop the basic theoretical foundation needed to reason about
how data is sampled and the implications on bias and variance. We build this founda‐
tion not on the dry equations of classic statistics but on the story of an urn filled with
marbles. We use the computational tools of simulation to reason about the properties
of selecting marbles from the urn and what they tell us about data collection in the
real world. We connect the simulation process to common statistical distributions
(the dry equations), but the basic tools of simulation enable us to go beyond what can
be directly modeled using equations.

As an example, we study how the pollsters failed to predict the outcome of the US
presidential election in 2016. Our simulation study uses the actual votes cast in Penn‐
sylvania. We simulate the sampling variation for a poll of these six million voters to
uncover how response bias can skew polls and see how simply collecting more data
would not have helped.

In a second simulation study, we examine a controlled experiment that demonstrated
the efficacy of a COVID-19 vaccine but also launched a heated debate on the relative
efficacy of vaccines. Abstracting the experiment to an urn model gives us a tool for
studying assignment variation in randomized controlled experiments. Through simu‐
lation, we find the expected outcome of the clinical trial. Our simulation, along with
careful examination of the data scope, debunks claims of vaccine ineffectiveness.

A third example uses simulation to imitate a measurement process. When we com‐
pare the fluctuations in our artificial measurements of air quality to real measure‐
ments, we can evaluate the appropriateness of the urn to model fluctuations in air
quality measurements. This comparison creates the backdrop against which we cali‐
brate PurpleAir monitors so that they can more accurately measure air quality in
times of low humidity, like during fire season.

27

However, before we tackle some of the most significant data debates of our time, we
first start small, very small, with the story of a few marbles sitting in an urn.

The Urn Model
The urn model was developed by Jacob Bernoulli in the early 1700s as a way to model
the process of selecting items from a population. The urn model shown in Figure 3-1
gives a visual depiction of the process of randomly sampling marbles from an urn.
Five marbles were originally in the urn: three black and two white. The diagram
shows that two draws were made: first a white marble was drawn and then a black
marble.

Figure 3-1. Diagram of two marbles being drawn, without replacement, from an urn

To set up an urn model, we first need to make a few decisions:

• The number of marbles in the urn
• The color (or label) on each marble
• The number of marbles to draw from the urn

Finally, we also need to decide on the sampling process. For our process, we mix the
marbles in the urn, and as we select a marble for our sample, we can choose to record
the color and return the marble to the urn (with replacement), or set aside the marble
so that it cannot be drawn again (without replacement).

These decisions make up the parameters of our model. We can adapt the urn model
to describe many real-world situations by our choice for these parameters. To illus‐
trate, consider the example in Figure 3-1. We can simulate the draw of two marbles
from our urn without replacement between draws using numpy’s random.choice
method. The numpy library supports functions for arrays, which can be particularly
useful for data science:

import numpy as np

urn = ["b", "b", "b", "w", "w"]

28 | Chapter 3: Simulation and Data Design

print("Sample 1:", np.random.choice(urn, size=2, replace=False))
print("Sample 2:", np.random.choice(urn, size=2, replace=False))

Sample 1: ['b' 'w']
Sample 2: ['w' 'b']

Notice that we set the replace argument to False to indicate that once we sample a
marble, we don’t return it to the urn.

With this basic setup, we can get approximate answers to questions about the kinds of
samples we would expect to see. What is the chance that our sample contains marbles
of only one color? Does the chance change if we return each marble after selecting it?
What if we changed the number of marbles in the urn? What if we draw more mar‐
bles from the urn? What happens if we repeat the process many times?

The answers to these questions are fundamental to our understanding of data collec‐
tion. We can build from these basic skills to simulate the urn and apply simulation
techniques to real-world problems that can’t be easily solved with classic probability
equations.

For example, we can use simulation to easily estimate the fraction of samples where
both marbles that we draw match in color. In the following code, we run 10,000
rounds of sampling two marbles from our urn. Using these samples, we can directly
compute the proportion of samples with matching marbles:

n = 10_000
samples = [np.random.choice(urn, size=2, replace=False) for _ in range(n)]
is_matching = [marble1 == marble2 for marble1, marble2 in samples]
print(f"Proportion of samples with matching marbles: {np.mean(is_matching)}")

Proportion of samples with matching marbles: 0.4032

We just carried out a simulation study. Our call to np.random.choice imitates the
chance process of drawing two marbles from the urn without replacement. Each call
to np.random.choice gives us one possible sample. In a simulation study, we repeat
this chance process many times (10_000 in this case) to get a whole bunch of samples.
Then we use the typical behavior of these samples to reason about what we might
expect to get from the chance process. While this might seem like a contrived exam‐
ple (it is), consider if we replaced the marbles with people on a dating service,
replaced the colors with more complex attributes, and perhaps used a neural network
to score a match, and you can start to see the foundation of much more sophisticated
analysis.

So far we have focused on the sample, but we are often interested in the relationship
between the sample we might observe and what it can tell us about the “population”
of marbles that were originally in the urn.

We can draw an analogy to data scope from Chapter 2: a set of marbles drawn from
the urn is a sample, and the collection of all marbles placed in the urn is the access

The Urn Model | 29

frame, which in this situation we take to be the same as the population. This blurring
of the difference between the access frame and the population points to the gap
between simulation and reality. Simulations tend to simplify models. Nonetheless,
they can give helpful insights to real-world phenomena.

The urn model, where we do not replace the marbles between draws, is a common
selection method called the simple random sample. We describe this method and
other sampling techniques based on it next.

Sampling Designs
The process of drawing marbles without replacement from an urn is equivalent to a
simple random sample. In a simple random sample, every sample has the same chance
of being selected. While the method name has the word simple in it, constructing a
simple random sample is often anything, but simple and in many cases is also the best
sampling procedure. Plus, if we are being honest, it can also be a little confusing.

To better understand this sampling method, we return to the urn model. Consider an
urn with seven marbles. Instead of coloring the marbles, we label each uniquely with
a letter A through G. Since each marble has a different label, we can more clearly iden‐
tify all possible samples that we might get. Let’s select three marbles from the urn
without replacement, and use the itertools library to generate the list of all
combinations:

from itertools import combinations

all_samples = ["".join(sample) for sample in combinations("ABCDEFG", 3)]
print(all_samples)
print("Number of Samples:", len(all_samples))

['ABC', 'ABD', 'ABE', 'ABF', 'ABG', 'ACD', 'ACE', 'ACF', 'ACG', 'ADE', 'ADF',
'ADG', 'AEF', 'AEG', 'AFG', 'BCD', 'BCE', 'BCF', 'BCG', 'BDE', 'BDF', 'BDG',
'BEF', 'BEG', 'BFG', 'CDE', 'CDF', 'CDG', 'CEF', 'CEG', 'CFG', 'DEF', 'DEG',
'DFG', 'EFG']
Number of Samples: 35

Our list shows that there are 35 unique sets of three marbles. We could have drawn
each of these sets six different ways. For example, the set {A, B, C} can be sampled:

from itertools import permutations

print(["".join(sample) for sample in permutations("ABC")])

['ABC', 'ACB', 'BAC', 'BCA', 'CAB', 'CBA']

In this small example, we can get a complete picture of all the ways in which we can
draw any three marbles from the urn.

Since each set of three marbles from the population of seven is equally likely to occur,
the chance of any one particular sample must be 1/35:

30 | Chapter 3: Simulation and Data Design

ℙ(ABC) = ℙ(ABD) = ⋯ = ℙ(EFG) = 1
35

We use the special symbol ℙ to stand for “probability” or “chance,” and we read the
statement ℙ(ABC) as “the chance the sample contains the marbles labeled A, B, and C
in any order.”

We can use the enumeration of all of the possible samples from the urn to answer
additional questions about this chance process. For example, to find the chance that
marble A is in the sample, we can add up the chance of all samples that contain A.
There are 15 of them, so the chance is:

ℙ(A is in the sample) = 15
35 = 3

7

When it’s too difficult to list and count all of the possible samples, we can use simula‐
tion to help understand this chance process.

Many people mistakenly think that the defining property of a sim‐
ple random sample is that every unit has an equal chance of being
in the sample. However, this is not the case. A simple random sam‐
ple of n units from a population of N means that every possible col‐
lection of n of the N units has the same chance of being selected. A
slight variant of this is the simple random sample with replacement,
where the units/marbles are returned to the urn after each draw.
This method also has the property that every sample of n units
from a population of N is equally likely to be selected. The differ‐
ence, though, is that there are more possible sets of n units because
the same marble can appear more than once in the sample.

The simple random sample (and its corresponding urn) is the main building block
for more complex survey designs. We briefly describe two of the more widely used
designs:

Stratified sampling
Divide the population into nonoverlapping groups, called strata (one group is
called a stratum and more than one are strata), and then take a simple random
sample from each. This is like having a separate urn for each stratum and draw‐
ing marbles from each urn, independently. The strata do not have to be the same
size, and we need not take the same number of marbles from each.

Cluster sampling
Divide the population into nonoverlapping subgroups, called clusters, take a sim‐
ple random sample of the clusters, and include all of the units in a cluster in the

The Urn Model | 31

sample. We can think of this as a simple random sample from one urn that con‐
tains large marbles that are themselves containers of small marbles. (The large
marbles need not have the same number of marbles in them.) When opened, the
sample of large marbles turns into the sample of small marbles. (Clusters tend to
be smaller than strata.)

As an example, we might organize our seven marbles, labeled A–G, into three clus‐
ters, (A, B), (C, D), and (E, F, G). Then, a cluster sample of size one has an equal
chance of drawing any of the three clusters. In this scenario, each marble has the
same chance of being in the sample:

ℙ(A in sample) = ℙ(cluster (A, B) chosen) = 1
3

ℙ(B in sample) = ℙ(cluster (A, B) chosen) = 1
3

⋮

ℙ(G in sample) = ℙ(cluster (E, F, G) chosen) = 1
3

But every combination of elements is not equally likely: it is not possible for the sam‐
ple to include both A and C, because they are in different clusters.

Often, we are interested in a summary of the sample; in other words, we are interes‐
ted in a statistic. For any sample, we can calculate the statistic, and the urn model
helps us find the distribution of possible values that statistic may take on. Next, we
examine the distribution of a statistic for our simple example.

Sampling Distribution of a Statistic
Suppose we are interested in testing the failure pressure of a new fuel tank design for
a rocket. It’s expensive to carry out the pressure tests since we need to destroy the fuel
tank, and we may need to test more than one fuel tank to address variations in
manufacturing.

We can use the urn model to choose the prototypes to be tested, and we can summa‐
rize our test results by the proportion of prototypes that fail the test. The urn model
provides us the knowledge that each of the samples has the same chance of being
selected, and so the pressure test results are representative of the population.

To keep the example simple, let’s say we have seven fuel tanks that are labeled like the
marbles from before. Let’s see what happens when tanks A, B, D, and F fail the pres‐
sure test, if chosen, and tanks C, E, and G pass.

32 | Chapter 3: Simulation and Data Design

For each sample of three marbles, we can find the proportion of failures according to
how many of these four defective prototypes are in the sample. We give a few exam‐
ples of this calculation:

Sample ABC BCE BDF CEG
Proportion 2/3 1/3 1 0

Since we are drawing three marbles from the urn, the only possible sample propor‐
tions are 0, 1/3, 2/3, and 1, and for each triple, we can calculate its corresponding
proportion. There are four samples that give us all failed tests (a sample proportion of
1). These are ABD, ABF, ADF, and BDF, so the chance of observing a sample propor‐
tion of 1 is 4/35. We can summarize the distribution of values for the sample propor‐
tion into a table, which we call the sampling distribution of the proportion:

Proportion of failures No. of samples Fraction of samples
0 1 1/35 ≈ 0.03

1/3 12 12/35 ≈ 0.34

2/3 18 18/35 ≈ 0.51

1 4 4/35 ≈ 0.11

Total 35 1

While these calculations are relatively straightforward, we can approximate them
through a simulation study. To do this, we take samples of three from our population
over and over—say 10,000 times. For each sample, we calculate the proportion of fail‐
ures. That gives us 10,000 simulated sample proportions. The table of the simulated
proportions should come close to the sampling distribution. We confirm this with a
simulation study.

Simulating the Sampling Distribution
Simulation can be a powerful tool to understand complex random processes. In our
example of seven fuel tanks, we are able to consider all possible samples from the cor‐
responding urn model. However, in situations with large populations and samples
and more complex sampling processes, it may not be tractable to directly compute
the chance of certain outcomes. In these situations, we often turn to simulation to
provide accurate estimates of the quantities we can’t compute directly.

Let’s set up the problem of finding the sampling distribution of the proportion of fail‐
ures in a simple random sample of three fuel tanks as an urn model. Since we are
interested in whether or not the tank fails, we use 1 to indicate a failure and 0 to indi‐
cate a pass, giving us an urn with marbles labeled as follows:

urn = [1, 1, 0, 1, 0, 1, 0]

The Urn Model | 33

We have encoded the tanks A through G using 1 for fail and 0 for pass, so we can take
the mean of the sample to get the proportion of failures in a sample:

sample = np.random.choice(urn, size=3, replace=False)
print(f"Sample: {sample}")
print(f"Prop Failures: {sample.mean()}")

Sample: [1 0 0]
Prop Failures: 0.3333333333333333

In a simulation study, we repeat the sampling process thousands of times to get thou‐
sands of proportions, and then we estimate the sampling distribution of the propor‐
tion from what we get in our simulation. Here, we construct 10,000 samples (and so
10,000 proportions):

samples = [np.random.choice(urn, size=3, replace=False) for _ in range(10_000)]
prop_failures = [s.mean() for s in samples]

We can study these 10,000 sample proportions and match our findings against what
we calculated already using the complete enumeration of all 35 possible samples. We
expect the simulation results to be close to our earlier calculations because we have
repeated the sampling process many, many times. That is, we want to compare the
fraction of the 10,000-sample proportion that is 0, 1/3, 2/3, and 1 to those we compu‐
ted exactly; those fractions are 1/35, 12/35, 18/35, and 4/35, or about 0.03, 0.34, 0.51,
and 0.11:

unique_els, counts_els = np.unique(prop_failures, return_counts=True)
pd.DataFrame({
 "Proportion of failures": unique_els,
 "Fraction of samples": counts_els / 10_000,
})

 Proportion of failures Fraction of samples
0 0.00 0.03
1 0.33 0.35
2 0.67 0.51
3 1.00 0.11

The simulation results are very close to the exact chances that we calculated earlier.

Simulation studies leverage random number generators to sample
many outcomes from a random process. In a sense, simulation
studies convert complex random processes into data that we can
readily analyze using the broad set of computational tools we cover
in this book. While simulation studies typically do not provide
definitive proof of a particular hypothesis, they can provide impor‐
tant evidence. In many situations, simulation is the most accurate
estimation process we have.

34 | Chapter 3: Simulation and Data Design

Drawing marbles from an urn with 0s and 1s is such a popular framework for under‐
standing randomness that this chance process has been given a formal name, hyper‐
geometric distribution, and most software provides functionality to rapidly carry out
simulations of this process. In the next section, we simulate the hypergeometric dis‐
tribution of the fuel tank example.

Simulation with the Hypergeometric Distribution
Instead of using random.choice, we can use numpy’s random.hypergeometric to sim‐
ulate drawing marbles from the urn and counting the number of failures. The ran
dom.hypergeometric method is optimized for the 0-1 urn and allows us to ask for
10,000 simulations in one call. For completeness, we repeat our simulation study and
calculate the empirical proportions:

simulations_fast = np.random.hypergeometric(
 ngood=4, nbad=3, nsample=3, size=10_000
)
print(simulations_fast)

[1 1 2 ... 1 2 2]

(We don’t think that a pass is “bad”; it’s just a naming convention to call the type you
want to count “good” and the other “bad.”)

We tally the fraction of the 10,000 samples with 0, 1, 2, or 3 failures:

unique_els, counts_els = np.unique(simulations_fast, return_counts=True)
pd.DataFrame({
 "Number of failures": unique_els,
 "Fraction of samples": counts_els / 10_000,
})

 Number of failures Fraction of samples
0 0 0.03
1 1 0.34
2 2 0.52
3 3 0.11

You might have asked yourself already: since the hypergeometric is so popular, why
not provide the exact distribution of the possible values? In fact, we can calculate
these exactly:

from scipy.stats import hypergeom

num_failures = [0, 1, 2, 3]
pd.DataFrame({
 "Number of failures": num_failures,
 "Fraction of samples": hypergeom.pmf(num_failures, 7, 4, 3),
})

The Urn Model | 35

 Number of failures Fraction of samples
0 0 0.03
1 1 0.34
2 2 0.51
3 3 0.11

Whenever possible, it’s a good idea to use the functionality pro‐
vided in a third-party package for simulating from a named distri‐
bution, such as the random number generators offered in numpy,
rather than writing your own function. It’s best to take advantage of
efficient and accurate code that others have developed. That said,
building from scratch on occasion can help you gain an under‐
standing of an algorithm, so we recommend trying it.

Perhaps the two most common chance processes are those that arise from counting
the number of 1s drawn from a 0-1 urn: drawing without replacement is the hyper‐
geometric distribution and drawing with replacement is the binomial distribution.

While this simulation was so simple that we could have used hypergeom.pmf to
directly compute our distribution, we wanted to demonstrate the intuition that a sim‐
ulation study can reveal. The approach we take in this book is to develop an under‐
standing of chance processes based on simulation studies. However, we do formalize
the notion of a probability distribution of a statistic (like the proportion of fails in a
sample) in Chapter 17.

Now that we have simulation as a tool for understanding accuracy, we can revisit the
election example from Chapter 2 and carry out a post-election study of what might
have gone wrong with the voter polls. This simulation study imitates drawing more
than a thousand marbles (voters who participate in the poll) from an urn of six mil‐
lion. We can examine potential sources of bias and the variation in the polling results,
and we can carry out a what-if analysis where we examine how the predictions might
have gone if a larger number of draws from the urn were taken.

Example: Simulating Election Poll Bias and Variance
In 2016, nearly every prediction for the outcome of the US presidential election was
wrong. This was a historic level of prediction error that shocked the statistics and
data science communities. Here, we examine why nearly every political poll was so
confident and yet also so wrong. This story both illustrates the power of simulation
and reveals the hubris of data and the challenge of bias.

The president of the United States is chosen by the Electoral College, not by popular
vote. Each state is allotted a certain number of votes to cast in the Electoral College
according to the size of its population. Typically, whomever wins the popular vote in

36 | Chapter 3: Simulation and Data Design

1 Manfred te Grotenhuis et al., “Better Poll Sampling Would Have Cast More Doubt on the Potential for Hillary
Clinton to Win the 2016 Election” London School of Economics, February 1, 2018.

a state receives all of the Electoral College votes for that state. With the aid of polls
conducted in advance of the election, pundits identify “battleground” states where the
election is expected to be close and the Electoral College votes might swing the
election.

In 2016, pollsters correctly predicted the election outcome in 46 of the 50 states. Not
bad! After all, for those 46 states, Donald Trump received 231 and Hillary Clinton
received 232 Electoral College votes—nearly a tie, with Clinton having a very narrow
lead. Unfortunately, the remaining four states, Florida, Michigan, Pennsylvania, and
Wisconsin, were identified as battleground states and accounted for a total of 75
votes. The margins of the popular vote in these four states were narrow. For example,
in Pennsylvania, Trump received 48.18% and Clinton received 47.46% of the
6,165,478 votes cast. Such narrow margins can make it hard to predict the outcome
given the sample sizes that the polls used. But there was an even greater challenge
hidden in the survey process itself.

Many experts have studied the 2016 election results to dissect and identify what went
wrong. According to the American Association for Public Opinion Research, one
online, opt-in poll adjusted its polling results for the education of the respondents but
used only three broad categories (high school or less, some college, and college grad‐
uate). The pollsters found that if they had separated out respondents with advanced
degrees from those with college degrees, then they would have reduced Clinton’s esti‐
mated percentage by 0.5 points. In other words, after the fact, they were able to iden‐
tify an education bias where highly educated voters tended to be more willing to
participate in polls. This bias matters because these voters also tended to prefer Clin‐
ton over Trump.

Now that we know how people actually voted, we can carry out a simulation study
like Manfred te Grotenhuis et al.’s, which imitates election polling under different sce‐
narios to help develop intuition for accuracy, bias, and variance.1 We can simulate
and compare the polls for Pennsylvania under two scenarios:

• People surveyed didn’t change their minds, didn’t hide who they voted for, and
were representative of those who voted on election day.

• People with a higher education were more likely to respond, which led to a bias
for Clinton.

Example: Simulating Election Poll Bias and Variance | 37

https://oreil.ly/4FWW2
https://oreil.ly/hOSC2

Our ultimate goal is to understand the frequency with which a poll incorrectly calls
the election for Hillary Clinton when a sample is collected with absolutely no bias
and when there is a small amount of nonresponse bias. We begin by setting up the
urn model for the first scenario.

The Pennsylvania Urn Model
Our urn model for carrying out a poll of Pennsylvania voters is an after-the-fact sit‐
uation where we use the outcome of the election. The urn has 6,165,478 marbles in it,
one for each voter. Like with our tiny population, we write on each marble the candi‐
date that they voted for, draw 1,500 marbles from the urn (1,500 is a typical size for
these polls), and tally the votes for Trump, Clinton, and any other candidate. From
the tally, we can calculate Trump’s lead over Clinton.

Since we care only about Trump’s lead over Clinton, we can lump together all votes
for other candidates. This way, each marble has one of three possible votes: Trump,
Clinton, or Other. We can’t ignore the “Other” category, because it impacts the size of
the lead. Let’s divvy up the voter counts between these three groups:

proportions = np.array([0.4818, 0.4746, 1 - (0.4818 + 0.4746)])
n = 1_500
N = 6_165_478
votes = np.trunc(N * proportions).astype(int)
votes

array([2970527, 2926135, 268814])

This version of the urn model has three types of marbles in it. It is a bit more complex
than the hypergeometric distribution, but it is still common enough to have a named
distribution: the multivariate hypergeometric. In Python, the urn model with more
than two types of marbles is implemented by the scipy.stats.multivariate_hyper
geom.rvs method. The function returns the number of each type of marble drawn
from the urn. We call the function as follows:

from scipy.stats import multivariate_hypergeom

multivariate_hypergeom.rvs(votes, n)

array([727, 703, 70])

As before, each time we call multivariate_hypergeom.rvs we get a different sample
and counts:

multivariate_hypergeom.rvs(votes, n)

array([711, 721, 68])

We need to compute Trump’s lead for each sample: (nT − nC)/n, where nT is the num‐
ber of Trump votes in the sample and nC the number for Clinton. If the lead is posi‐
tive, then the sample shows a win for Trump.

38 | Chapter 3: Simulation and Data Design

We know the actual lead was 0.4818 – 0.4746 = 0.0072. To get a sense of the variation
in the poll, we can simulate the chance process of drawing from the urn over and over
and examine the values that we get in return. Now we can simulate 100,000 polls of
1,500 voters from the votes cast in Pennsylvania:

def trump_advantage(votes, n):
 sample_votes = multivariate_hypergeom.rvs(votes, n)
 return (sample_votes[0] - sample_votes[1]) / n

simulations = [trump_advantage(votes, n) for _ in range(100_000)]

On average, the polling results show Trump with close to a 0.7% lead, as expected
given the composition of the more than six million votes cast:

np.mean(simulations)

0.007177066666666666

However, many times the lead in a sample was negative, meaning Clinton was the
winner for that sample of voters. The following histogram shows the sampling distri‐
bution of Trump’s advantage in Pennsylvania for a sample of 1,500 voters. The verti‐
cal dashed line at 0 shows that more often than not, Trump is called, but there are
many times when the poll of 1,500 shows Clinton in the lead:

In the 100,0000 simulated polls, we find Trump a victor about 60% of the time:

np.mean(np.array(simulations) > 0)

0.60613

Example: Simulating Election Poll Bias and Variance | 39

2 Grotenhuis et al., “Better Poll Sampling Would Have Cast More Doubt on the Potential for Hillary Clinton to
Win the 2016 Election.”

In other words, a sample will correctly predict Trump’s victory even if the sample was
collected with absolutely no bias about 60% of the time. And this unbiased sample will
be wrong about 40% of the time.

We have used the urn model to study the variation in a simple poll, and we found
how a poll’s prediction might look if there was no bias in our selection process (the
marbles are indistinguishable, and every possible collection of 1,500 marbles out of
the more than six million marbles is equally likely). Next, we see what happens when
a little bias enters the mix.

An Urn Model with Bias
According to Grotenhuis, “In a perfect world, polls sample from the population of
voters, who would state their political preference perfectly clearly and then vote
accordingly.”2 That’s the simulation study that we just performed. In reality, it is often
difficult to control for every source of bias.

We investigate here the effect of a small education bias on the polling results. Specifi‐
cally, we examine the impacts of a 0.5% bias in favor of Clinton. This bias essentially
means that we see a distorted picture of voter preferences in our poll. Instead of
47.46% votes for Clinton, we have 47.96%, and we have 48.18 – 0.5 = 47.68% for
Trump. We adjust the proportions of marbles in the urn to reflect this change:

bias = 0.005
proportions_bias = np.array([0.4818 - bias, 0.4747 + bias,
 1 - (0.4818 + 0.4746)])
proportions_bias

array([0.48, 0.48, 0.04])

votes_bias = np.trunc(N * proportions_bias).astype(int)
votes_bias

array([2939699, 2957579, 268814])

When we carry out the simulation study again, this time with the biased urn, we find
a quite different result:

simulations_bias = [trump_advantage(votes_bias, n) for _ in range(100_000)]

40 | Chapter 3: Simulation and Data Design

np.mean(np.array(simulations_bias) > 0)

0.44967

Now, Trump would have a positive lead in about 45% of the polls. Notice that the his‐
tograms from the two simulations are similar in shape. They are symmetric with tails
of reasonable length. That is, they appear to roughly follow the normal curve. The
second histogram is shifted slightly to the left, which reflects the nonresponse bias we
introduced. Would increasing the sample size have helped? We investigate this topic
next.

Conducting Larger Polls
With our simulation study we can gain insight on the impact of a larger poll on the
sample lead. For example, we can try a sample size of 12,000, eight times the size of
the actual poll, and run 100,000 simulations for both the unbiased and biased
scenarios:

simulations_big = [trump_advantage(votes, 12_000) for _ in range(100_000)]
simulations_bias_big = [trump_advantage(votes_bias, 12_000)
 for _ in range(100_000)]

scenario_no_bias = np.mean(np.array(simulations_big) > 0)
scenario_bias = np.mean(np.array(simulations_bias_big) > 0)
print(scenario_no_bias, scenario_bias)

0.78968 0.36935

Example: Simulating Election Poll Bias and Variance | 41

The simulation shows that Trump’s lead is detected in only about one-third of the
simulated biased scenario. The spread of the histogram of these results is narrower
than the spread when only 1,500 voters were polled. Unfortunately, it has narrowed
in on the wrong value. We haven’t overcome the bias; we just have a more accurate
picture of the biased situation. Big data has not come to the rescue. Additionally,
larger polls have other problems. They are often harder to conduct because pollsters
are working with limited resources, and efforts that could go into improving the data
scope are being redirected to expanding the poll:

After the fact, with multiple polls for the same election, we can detect bias. In a post-
election analysis of over 4,000 polls for 600 state-level, gubernatorial, senatorial, and
presidential elections, researchers found that, on average, election polls exhibit a bias
of about 1.5 percentage points, which helps explain why so many polls got it wrong.

When the margin of victory is relatively small, as it was in 2016, a larger sample size
reduces the sampling error, but unfortunately, if there is bias, then the predictions are
close to the biased estimate. If the bias pushes the prediction from one candidate
(Trump) to another (Clinton), then we have a “surprise” upset. Pollsters develop voter
selection schemes that attempt to reduce bias, like the separation of voters’ preference
by education level. But, as in this case, it can be difficult, even impossible, to account
for new, unexpected sources of bias. Polls are still useful, but we need to acknowledge
the issues with bias and do a better job at reducing it.

In this example, we used the urn model to study a simple random sample in polling.
Another common use of the urn is in randomized controlled experiments.

42 | Chapter 3: Simulation and Data Design

http://dx.doi.org/10.1080/01621459.2018.1448823
http://dx.doi.org/10.1080/01621459.2018.1448823

Example: Simulating a Randomized Trial for a Vaccine
In a drug trial, volunteers for the trial receive either the new treatment or a placebo (a
fake treatment), and researchers control the assignment of volunteers to the treat‐
ment and placebo groups. In a randomized controlled experiment, they use a chance
process to make this assignment. Scientists essentially use an urn model to select the
subjects for the treatment and control (those given the placebo groups). We can simu‐
late the chance mechanism of the urn to better understand variation in the outcome
of an experiment and the meaning of efficacy in clinical trials.

In March 2021, Detroit Mayor Mike Duggan made national news when he turned
down a shipment of over 6,000 Johnson & Johnson (J&J) vaccine doses, stating that
the citizens of his city should “get the best.” The mayor was referring to the efficacy
rate of the vaccine, which was reported to be about 66%. In comparison, Moderna
and Pfizer both reported efficacy rates of about 95% for their vaccines.

On the surface, Duggan’s reasoning seems valid, but the scopes of the three clinical
trials are not comparable, meaning direct comparisons of the experimental results are
problematic. Moreover, the CDC considers a 66% efficacy rate quite good, which is
why it was given emergency approval.

Let’s consider the points of scope and efficacy in turn.

Scope
Recall that when we evaluate the scope of the data, we consider the who, when, and
where of the study. For the Johnson & Johnson clinical trial, the participants:

• Included adults age 18 and over, where roughly 40% had preexisting conditions
associated with an increased risk for getting severe COVID-19

• Enrolled in the study from October to November 2020
• Came from eight countries across three continents, including the US and South

Africa

The participants in the Moderna and Pfizer trials were primarily from the US,
roughly 40% had preexisting conditions, and the trial took place earlier, over summer
2020. The timing and location of the trials make them difficult to compare. Cases of
COVID-19 were at a low point in the summer in the US, but they rose rapidly in the
late fall. Also, a variant of the virus that was more contagious was spreading rapidly in
South Africa at the time of the J&J trial.

Each clinical trial was designed to test a vaccine against the situation of no vaccine
under similar circumstances through the random assignment of subjects to treatment
and control groups. While the scope from one trial to the next is quite different, the
randomization within a trial keeps the scope of the treatment and control groups

Example: Simulating a Randomized Trial for a Vaccine | 43

https://oreil.ly/kB757
https://oreil.ly/25Pok

roughly the same. This enables meaningful comparisons between groups in the same
trial. The scope was different enough across the three vaccine trials to make direct
comparisons of the three trials problematic.

In the trial carried out for the J&J vaccine, 43,738 people were enrolled. These partici‐
pants were split into two groups at random. Half received the new vaccine, and the
other half received a placebo, such as a saline solution. Then everyone was followed
for 28 days to see whether they contracted COVID-19.

A lot of information was recorded on each patient, such as their age, race, and sex,
and in addition whether they caught COVID-19, including the severity of the disease.
At the end of 28 days, the researchers found 468 cases of COVID-19, with 117 of
these in the treatment group and 351 in the control group.

The random assignment of patients to treatment and control gives the scientists a
framework to assess the effectiveness of the vaccine. The typical reasoning goes as
follows:

1. Begin with the assumption that the vaccine is ineffective.
2. So the 468 who caught COVID-19 would have caught it whether or not they

received the vaccine.
3. And the remaining 43,270 people in the trial who did not get sick would have

remained healthy whether or not they received the vaccine.
4. The split of 117 sick people in treatment and 351 in control was solely due to the

chance process in assigning participants to treatment or control.

We can set up an urn model that reflects this scenario and then study, via simulation,
the behavior of the experimental results.

The Urn Model for Random Assignment
Our urn has 43,738 marbles, one for each person in the clinical trial. Since there were
468 cases of COVID-19 among them, we label 468 marbles with a 1 and the remain‐
ing 43,270 with a 0. We draw half the marbles (21,869) from the urn to receive the
treatment, and the remaining half receive the placebo. The key result of the experi‐
ment is simply the count of the number of marbles marked 1 that were randomly
drawn from the urn.

We can simulate this process to get a sense of how likely it would be under these
assumptions to draw at most 117 marbles marked 1 from the urn. Since we draw half
of the marbles from the urn, we would expect about half of the 468, or 234, to be
drawn. The simulation study gives us a sense of the variation that might result from
the random assignment process. That is, the simulation can give us an approximate
chance that the trials would result in so few cases of the virus in the treatment group.

44 | Chapter 3: Simulation and Data Design

https://oreil.ly/epz0T

3 Unfortunately, despite the vaccine’s efficacy, the US Food and Drug Administration limited the use of the J&J
vaccine in May 2022 due to a heightened risk of developing rare and potentially life-threatening blood clots.

Several key assumptions enter into this urn model, such as the
assumption that the vaccine is ineffective. It’s important to keep
track of the reliance on these assumptions because our simulation
study gives us an approximation of the rarity of an outcome like
the one observed only under these key assumptions.

As before, we can simulate the urn model using the hypergeometric probability dis‐
tribution, rather than having to program the chance process from scratch:

simulations_fast = np.random.hypergeometric(ngood=468, nbad=43270,
 nsample=21869, size=500000)

In our simulation, we repeated the process of random assignment to the treatment
group 500,000 times. Indeed, we found that not one of the 500,000 simulations had
117 or fewer cases. It would be an extremely rare event to see so few cases of
COVID-19 if in fact the vaccine was not effective.

After the problems with comparing drug trials that have different scopes and the effi‐
cacy for preventing severe cases of COVID-19 was explained, Mayor Duggan retrac‐
ted his original statement, saying, “I have full confidence that the Johnson & Johnson
vaccine is both safe and effective.”3

Example: Simulating a Randomized Trial for a Vaccine | 45

This example has shown that:

• Using a chance process in the assignment of subjects to treatments in clinical tri‐
als can help us answer what-if scenarios.

• Considering data scope can help us determine whether it is reasonable to com‐
pare figures from different datasets.

Simulating the draw of marbles from an urn is a useful abstraction for studying the
possible outcomes from survey samples and controlled experiments. The simulation
works because it imitates the chance mechanism used to select a sample or to assign
people to a treatment. In settings where we measure natural phenomena, our meas‐
urements tend to follow a similar chance process. As described in Chapter 2, instru‐
ments typically have an error associated with them, and we can use an urn to
represent the variability in measuring an object.

Example: Measuring Air Quality
Across the US, sensors to measure air pollution are widely used by individuals, com‐
munity groups, and state and local air monitoring agencies. For example, on two days
in September 2020, approximately 600,000 Californians and 500,000 Oregonians
viewed PurpleAir’s map as fire spread through their states and evacuations were plan‐
ned. (PurpleAir creates air quality maps from crowdsourced data that streams in
from its sensors.)

The sensors measure the amount of particulate matter in the air that has a diameter
smaller than 2.5 micrometers (the unit of measurement is micrograms per cubic
meter: μg/m3). The measurements recorded are the average concentrations over two
minutes. While the level of particulate matter changes over the course of a day as, for
example, people commute to and from work, there are certain times of the day, like at
midnight, when we expect the two-minute averages to change little in a half hour. If
we examine the measurements taken during these times of the day, we can get a sense
of the combined variability in the instrument recordings and the mixing of particles
in the air.

Anyone can access sensor measurements from PurpleAir’s site. The site provides a
download tool, and data are available for any sensor that appears on PurpleAir’s map.
We downloaded data from one sensor over a 24-hour period and selected three half-
hour time intervals spread throughout the day where the readings were roughly con‐
stant over the 30-minute period. This gave us three sets of 15 two-minute averages,
for a total of 45 measurements:

46 | Chapter 3: Simulation and Data Design

https://oreil.ly/t6JzZ
https://www2.purpleair.com

 aq2.5 time hour meds diff30
0 6.14 2022-04-01 00:01:10 UTC 0 5.38 0.59
1 5.00 2022-04-01 00:03:10 UTC 0 5.38 -0.55
2 5.29 2022-04-01 00:05:10 UTC 0 5.38 -0.26
...
42 7.55 2022-04-01 19:27:20 UTC 19 8.55 -1.29
43 9.47 2022-04-01 19:29:20 UTC 19 8.55 0.63
44 8.55 2022-04-01 19:31:20 UTC 19 8.55 -0.29

45 rows × 5 columns

Line plots can give us a sense of variation in the measurements. In one 30-minute
period, we expect the measurements to be roughly the same, with the exception of
minor variations from the particles moving in the air and the measurement error of
the instrument:

The plot shows us how the air quality worsens throughout the day, but in each of
these half-hour intervals, the air quality is roughly constant at 5.4, 6.6, and 8.6 μg/m3

at midnight, 11 a.m., and 7 p.m., respectively. We can think of the data scope as fol‐
lows: at this particular location in a specific half-hour time interval, there is an aver‐
age particle concentration in the air surrounding the sensor. This concentration is our
target, and our instrument, the sensor, takes many measurements that form a sample
from the access frame. (See Chapter 2 for the dartboard analogy of this process.) If
the instrument is working properly, the measurements are centered on the target: the
30-minute average.

Example: Measuring Air Quality | 47

To get a better sense of the variation in a half-hour interval, we can examine the dif‐
ferences of the measurements from the median for the corresponding half hour. The
distribution of these “errors” is as follows:

The histogram shows us that the typical fluctuations in measurements are often less
than 0.5 μg/m3 and rarely greater than 1 μg/m3. With instruments, we often consider
their relative standard error, which is the standard deviation as a percentage of the
mean. The standard deviation of these 45 deviations is:

np.std(pm['diff30'])

0.6870817156282193

Given that the hourly measurements range from 5 to 9 μg/m3, the relative error is 8%
to 12%, which is reasonably accurate.

We can use the urn model to simulate the variability in this measurement process. We
place in the urn the deviations of the measurements from their 30-minute medians
for all 45 readings, and we simulate a 30-minute air quality sequence of measure‐
ments by drawing 15 times with replacement from the urn and adding the deviations
drawn to a hypothetical 30-minute average:

urn = pm["diff30"]

np.random.seed(221212)
sample_err = np.random.choice(urn, size=15, replace=True)
aq_imitate = 11 + sample_err

We can add a line plot for this artificial set of measurements to our earlier line plots,
and compare it to the three real ones:

48 | Chapter 3: Simulation and Data Design

The shape of the line plot from the simulated data is similar to the others, which indi‐
cates that our model for the measurement process is reasonable. Unfortunately, what
we don’t know is whether the measurements are close to the true air quality. To detect
bias in the instrument, we need to make comparisons against a more accurate instru‐
ment or take measurements in a protected environment where the air has a known
quantity of particulate matter. In fact, researchers have found that low humidity can
distort the readings so that they are too high. In Chapter 12, we carry out a more
comprehensive analysis of the PurpleAir sensor data and calibrate the instruments to
improve their accuracy.

Summary
In this chapter, we used the analogy of drawing marbles from an urn to model ran‐
dom sampling from populations and random assignment of subjects to treatments in
experiments. This framework enables us to run simulation studies for hypothetical
surveys, experiments, or other chance processes in order to study their behavior. We
found the chance of observing particular results from a clinical trial under the
assumption that the treatment was not effective, and we studied the support for Clin‐
ton and Trump with samples based on actual votes cast in the election. These simula‐
tion studies enabled us to quantify the typical deviations in the chance process and to
approximate the distribution of summary statistics, like Trump’s lead over Clinton.
These simulation studies revealed the sampling distribution of a statistic and helped
us answer questions about the likelihood of observing results like ours under the urn
model.

Summary | 49

https://oreil.ly/Xkvh0

The urn model reduces to a few basics: the number of marbles in the urn, what is
written on each marble, the number of marbles to draw from the urn, and whether or
not they are replaced between draws. From there, we can simulate increasingly
complex data designs. However, the crux of the urn’s usefulness is the mapping from
the data design to the urn. If samples are not randomly drawn, subjects are not ran‐
domly assigned to treatments, or measurements are not made on well-calibrated
equipment, then this framework falls short in helping us understand our data and
make decisions. On the other hand, we also need to remember that the urn is a sim‐
plification of the actual data collection process. If in reality there is bias in data collec‐
tion, then the randomness we observe in the simulation doesn’t capture the complete
picture. Too often, data scientists wave these annoyances aside and address only the
variability described by the urn model. That was one of the main problems in the sur‐
veys predicting the outcome of the 2016 US presidential election.

In each of these examples, the summary statistics that we have studied were given to
us as part of the example. In the next chapter, we address the question of how to
choose a summary statistic to represent the data.

50 | Chapter 3: Simulation and Data Design

CHAPTER 4

Modeling with Summary Statistics

We saw in Chapter 2 the importance of data scope and in Chapter 3 the importance
of data generation mechanisms, such as one that can be represented by an urn model.
Urn models address one aspect of modeling: they describe chance variation and
ensure that the data are representative of the target. Good scope and representative
data lay the groundwork for extracting useful information from data, which is the
other part of modeling. This information is often referred to as the signal in the data.
We use models to approximate the signal, with the simplest of these being the con‐
stant model, where the signal is approximated by a single number, like the mean or
median. Other, more complex models summarize relationships between features in
the data, such as humidity and particulate matter in air quality (Chapter 12), upward
mobility and commute time in communities (Chapter 15), and height and weight of
animals (Chapter 18). These more complex models are also approximations built
from data. When a model fits the data well, it can provide a useful approximation to
the world or simply a helpful description of the data.

In this chapter, we introduce the basics of model fitting through a loss formulation.
We demonstrate how to model patterns in the data by considering the loss that arises
from using a simple summary to describe the data, the constant model. We delve
deeper into the connections between the urn model and the fitted model in Chap‐
ter 16, where we examine the balance between signal and noise when fitting models,
and in Chapter 17, where we tackle the topics of inference, prediction, and hypothesis
testing.

The constant model lets us introduce model fitting from the perspective of loss mini‐
mization in a simple context, and it helps us connect summary statistics, like the
mean and median, to more complex modeling scenarios in later chapters. We begin
with an example that uses data about the late arrival of a bus to introduce the con‐
stant model.

51

1 We (the authors) first learned of the bus arrival time data from an analysis by a data scientist named Jake
VanderPlas. We’ve named the protagonist of this section in his honor.

The Constant Model
A transit rider, Jake, often takes the northbound C bus at the 3rd & Pike bus stop in
downtown Seattle.1 The bus is supposed to arrive every 10 minutes, but Jake notices
that he sometimes waits a long time for the bus. He wants to know how late the bus
usually is. Jake was able to acquire the scheduled arrival and actual arrival times for
his bus from the Washington State Transportation Center. From these data, he can
calculate the number of minutes that each bus is late to arrive at his stop:

times = pd.read_csv('data/seattle_bus_times_NC.csv')
times

 route direction scheduled actual minutes_late
0 C northbound 2016-03-26 06:30:28 2016-03-26 06:26:04 -4.40
1 C northbound 2016-03-26 01:05:25 2016-03-26 01:10:15 4.83
2 C northbound 2016-03-26 21:00:25 2016-03-26 21:05:00 4.58
...
1431 C northbound 2016-04-10 06:15:28 2016-04-10 06:11:37 -3.85
1432 C northbound 2016-04-10 17:00:28 2016-04-10 16:56:54 -3.57
1433 C northbound 2016-04-10 20:15:25 2016-04-10 20:18:21 2.93

1434 rows × 5 columns

The minutes_late column in the data table records how late each bus was. Notice
that some of the times are negative, meaning that the bus arrived early. Let’s examine
a histogram of the number of minutes each bus is late:

fig = px.histogram(times, x='minutes_late', width=450, height=250)
fig.update_xaxes(range=[-12, 60], title_text='Minutes late')
fig

52 | Chapter 4: Modeling with Summary Statistics

We can already see some interesting patterns in the data. For example, many buses
arrive earlier than scheduled, but some are well over 20 minutes late. We also see a
clear mode (high point) at 0, meaning many buses arrive roughly on time.

To understand how late a bus on this route typically is, we’d like to summarize late‐
ness by a constant—this is a statistic, a single number, like the mean, median, or
mode. Let’s find each of these summary statistics for the minutes_late column in the
data table.

From the histogram, we estimate the mode of the data to be 0, and we use Python to
compute the mean and median:

mean: 1.92 mins late
median: 0.74 mins late
mode: 0.00 mins late

Naturally, we want to know which of these numbers best represents a summary of
lateness. Rather than relying on rules of thumb, we take a more formal approach. We
make a constant model for bus lateness. Let’s call this constant θ (in modeling, θ is
often referred to as a parameter). For example, if we consider θ = 5, then our model
approximates the bus to typically be five minutes late.

Now, θ = 5 isn’t a particularly good guess. From the histogram of minutes late, we saw
that there are many more points closer to 0 than 5. But it isn’t clear that θ = 0 (the
mode) is a better choice than θ = 0.74 (the median), θ = 1.92 (the mean), or some‐
thing else entirely. To make choices between different values of θ, we would like to
assign any value of θ a score that measures how well that constant fits the data. That
is, we want to assess the loss involved in approximating the data by a constant, like
θ = 5. And ideally, we want to pick the constant that best fits our data, meaning the
constant that has the smallest loss. In the next section, we describe more formally
what we mean by loss and show how to use it to fit a model.

The Constant Model | 53

Minimizing Loss
We want to model how late the northbound C bus is by a constant, which we call θ,
and we want to use the data of actual number of minutes each bus is late to figure out
a good value for θ. To do this, we use a loss function—a function that measures how
far away our constant, θ, is from the actual data.

A loss function is a mathematical function that takes in θ and a data value y. It out‐
puts a single number, the loss, that measures how far away θ is from y. We write the
loss function as � (θ, y).

By convention, the loss function outputs lower values for better values of θ and larger
values for worse θ. To fit a constant to our data, we select the particular θ that pro‐
duces the lowest average loss across all choices for θ. In other words, we find the θ
that minimizes the average loss for our data, y1, …, yn. More formally, we write the
average loss as L(θ, y1, y2, …, yn), where:

L(θ, y1, y2, …, yn) = mean � (θ, y1), � (θ, y2), …, � (θ, yn)

= 1
n ∑

i = 1

n
� (θ, yi)

As a shorthand, we often use the vector y = [y1, y2, …, yn]. Then we can write the
average loss as:

L(θ, y) = 1
n ∑

i = 1

n
� (θ, yi)

Notice that � (θ, y) tells us the model’s loss for a single data point
while L(θ, y) gives the model’s average loss for all the data points.
The capital L helps us remember that the average loss combines
multiple smaller � values.

Once we define a loss function, we can find the value of θ that produces the smallest
average loss. We call this minimizing value θ̂ . In other words, of all the possible θ
values, θ̂ is the one that produces the smallest average loss for our data. We call this
optimization process model fitting; it finds the best constant model for our data.

Next, we look at two particular loss functions: absolute error and squared error. Our
goal is to fit the model and find θ̂ for each of these loss functions.

54 | Chapter 4: Modeling with Summary Statistics

Mean Absolute Error
We start with the absolute error loss function. Here’s the idea behind absolute loss. For
some value of θ and data value y:

1. Find the error, y − θ.
2. Take the absolute value of the error, |y − θ|.

So the loss function is � (θ, y) = | y − θ|.

Taking the absolute value of the error is a simple way to convert negative errors into
positive ones. For instance, the point y = 4 is equally far away from θ = 2 and θ = 6,
so the errors are equally “bad.”

The average of the absolute errors is called the mean absolute error (MAE). The MAE
is the average of each of the individual absolute errors:

L(θ, y) = 1
n ∑

i = 1

n
| yi − θ|

Notice that the name MAE tells you how to compute it: take the Mean of the Abso‐
lute value of the Errors, {yi − θ}.

We can write a simple Python function to compute this loss:

def mae_loss(theta, y_vals):
 return np.mean(np.abs(y_vals - theta))

Let’s see how this loss function behaves when we have just five data points
[– 1, 0, 2, 5, 10]. We can try different values of θ and see what the MAE outputs for
each value:

Minimizing Loss | 55

We suggest verifying some of these loss values by hand to check that you understand
how the MAE is computed.

Of the values of θ that we tried, we found that θ = 2 has the lowest mean absolute
error. For this simple example, 2 is the median of the data values. This isn’t a coinci‐
dence. Let’s now check what the average loss is for the original dataset of bus late
times. We find the MAE when we set θ to the mode, median, and mean of the
minutes late, respectively:

We see again that the median (middle plot) gives a smaller loss than the mode and
mean (left and right plots). In fact, for absolute loss, the minimizing θ̂ is the
median{y1, y2, …, yn}.

So far, we have found the best value of θ by simply trying out a few values and then
picking the one with the smallest loss. To get a better sense of the MAE as a function
of θ, we can try many more values of θ and plot a curve that shows how L(θ, y)
changes as θ changes. We draw the curve for the preceding example with the five data
values [– 1, 0, 2, 5, 10]:

The preceding plot shows that in fact, θ = 2 is the best choice for this small dataset of
five values. Notice the shape of the curve. It is piecewise linear, where the line

56 | Chapter 4: Modeling with Summary Statistics

segments connect at the location of the data values (–1, 0, 2, and 5). This is a property
of the absolute value function. With a lot of data, the flat pieces are less obvious. Our
bus data have over 1,400 points and the MAE curve appears smoother:

We can use this plot to help confirm that the median of the data is the minimizing
value; in other words, θ̂ = 0.74. This plot is not really a proof, but hopefully it’s con‐
vincing enough for you.

Next, let’s look at another loss function that squares error.

Mean Squared Error
We have fitted a constant model to our data and found that with mean absolute error,
the minimizer is the median. Now we’ll keep our model the same but switch to a dif‐
ferent loss function: squared error. Instead of taking the absolute difference between
each data value y and the constant θ, we’ll square the error. That is, for some value of
θ and data value y:

1. Find the error, y − θ.

2. Take the square of the error, (y − θ)2.

This gives the loss function � (θ, y) = (y − θ)2.

As before, we want to use all of our data to find the best θ, so we compute the mean
squared error, or MSE for short:

L(θ, y) = L(θ, y1, y2, …, yn) = 1
n ∑

i = 1

n
(yi − θ)2

Minimizing Loss | 57

We can write a simple Python function to compute the MSE:

def mse_loss(theta, y_vals):
 return np.mean((y_vals - theta) ** 2)

Let’s again try the mean, median, and mode as potential minimizers of the MSE:

Now when we fit the constant model using MSE loss, we find that the mean (right
plot) has a smaller loss than the mode and the median (left and middle plots).

Let’s plot the MSE curve for different values of θ given our data. The curve shows that
the minimizing value θ̂ is close to 2:

One feature of this curve that is quite noticeable is how rapidly the MSE grows com‐
pared to the MAE (note the range on the vertical axis). This growth has to do with
the nature of squaring errors; it places a much higher loss on data values further away
from θ. If θ = 10 and y = 110, the squared loss is (10 − 110)2 = 10, 000 whereas the
absolute loss is |10 − 110 | = 100. For this reason, the MSE is more sensitive to unusu‐
ally large data values than the MAE.

58 | Chapter 4: Modeling with Summary Statistics

From the MSE curve, it appears that the minimizing θ̂ is the mean of y. Again, this is
no mere coincidence; the mean of the data always coincides with θ̂ for squared error.
We show how this comes about from the quadratic nature of the MSE. Along the way,
we demonstrate a common representation of squared loss as a sum of variance and
bias terms, which is at the heart of model fitting with squared loss. To begin, we add
and subtract ȳ in the loss function and expand the square as follows:

L(θ, y) = 1
n ∑

i = 1

n
(yi − θ)2

= 1
n ∑

i = 1

n
[(yi − ȳ) + (ȳ − θ)]2

= 1
n ∑

i = 1

n
[(yi − ȳ)2 + 2(yi − ȳ)(ȳ − θ) + (ȳ − θ)2]

Next, we split the MSE into the sum of these three terms and note that the middle
term is 0, due to the simple property of the average: ∑(yi − ȳ) = 0:

1
n ∑

i = 1

n
(yi − ȳ)2 + 1

n ∑
i = 1

n
2(yi − ȳ)(ȳ − θ) + 1

n ∑
i = 1

n
(ȳ − θ)2

= 1
n ∑

i = 1

n
(yi − ȳ)2 + 2(ȳ − θ) 1

n ∑
i = 1

n
(yi − ȳ) + 1

n ∑
i = 1

n
(ȳ − θ)2

= 1
n ∑

i = 1

n
(yi − ȳ)2 + (ȳ − θ)2

Of the remaining two terms, the first does not involve θ. You probably recognize it as
the variance of the data. The second term is always non-negative. It is called the bias
squared. This second term, the bias squared, is 0 when θ is ȳ, so θ̂ = ȳ gives the small‐
est MSE for any dataset.

We have seen that for absolute loss, the best constant model is the median, but for
squared error, it’s the mean. The choice of the loss function is an important aspect of
model fitting.

Choosing Loss Functions
Now that we’ve worked with two loss functions, we can return to our original ques‐
tion: how do we choose whether to use the median, mean, or mode? Since these

Minimizing Loss | 59

2 The mode minimizes a loss function called 0-1 loss. Although we haven’t covered this specific loss, the proce‐
dure is identical: pick the loss function, then find what minimizes the loss.

statistics minimize different loss functions,2 we can equivalently ask: what is the most
appropriate loss function for our problem? To answer this question, we look at the
context of our problem.

Compared to the MAE, the MSE gives especially large losses when the bus is much
later (or earlier) than expected. A bus rider who wants to understand the typical late
times would use the MAE and the median (0.74 minutes late), but a rider who
despises unexpected large late times might summarize the data using the MSE and
the mean (1.92 minutes late).

If we want to refine the model even more, we can use a more specialized loss func‐
tion. For example, suppose that when a bus arrives early, it waits at the stop until the
scheduled time of departure; then we might want to assign an early arrival 0 loss. And
if a really late bus is a larger aggravation than a moderately late one, we might choose
an asymmetric loss function that gives a larger penalty to super-late arrivals.

In essence, context matters when choosing a loss function. By thinking carefully
about how we plan to use the model, we can pick a loss function that helps us make
good data-driven decisions.

Summary
We introduced the constant model: a model that summarizes the data by a single
value. To fit the constant model, we chose a loss function that measured how well a
given constant fits a data value, and we computed the average loss over all of the data
values. We saw that depending on the choice of loss function, we get a different mini‐
mizing value: we found that the mean minimizes the average squared error (MSE),
and the median minimizes the average absolute error (MAE). We also discussed how
we can incorporate context and knowledge of our problem to pick a loss function.

The idea of fitting models through loss minimization ties simple summary statistics—
like the mean, median, and mode—to more complex modeling situations. The steps
we took to model our data apply to many modeling scenarios:

1. Select the form of a model (such as the constant model).
2. Select a loss function (such as absolute error).
3. Fit the model by minimizing the loss over all the data (such as average loss).

For the rest of this book, our modeling techniques expand upon one or more of these
steps. We introduce new models, new loss functions, and new techniques for

60 | Chapter 4: Modeling with Summary Statistics

minimizing loss. Chapter 5 revisits the study of a bus arriving late at its stop. This
time, we present the problem as a case study and visit all stages of the data science
lifecycle. By going through these stages, we make some unusual discoveries; when we
augment our analysis by considering data scope and using an urn to simulate a rider
arriving at the bus stop, we find that modeling bus lateness is not the same as model‐
ing the rider’s experience waiting for a bus.

Summary | 61

CHAPTER 5

Case Study: Why Is My Bus Always Late?

Jake VanderPlas’s blog, Pythonic Perambulations, offers a great example of what it’s
like to be a modern data scientist. As data scientists, we see data in our work, daily
routines, and personal lives, and we tend to be curious about what insights these data
might bring to our understanding of the world. In this first case study, we borrow
from one of the posts on Pythonic Perambulations, “The Waiting Time Paradox, or,
Why Is My Bus Always Late?”, to model waiting for a bus on a street corner in Seattle.
We touch on each stage of the data lifecycle, but in this first case study, our focus is on
the process of thinking about the question, data, and model, rather than on data
structures and modeling techniques. A constant model and simulation study get us a
long way toward understanding the issues.

VanderPlas’s post was inspired by his experience waiting for the bus. The wait always
seemed longer than expected. This experience did not match the reasoning that if a
bus comes every 10 minutes and you arrive at the stop at a random time, then, on
average, the wait should be about 5 minutes. Armed with data provided by the Wash‐
ington State Transportation Center, the author was able to investigate this phenom‐
enon. We do the same.

We apply concepts introduced in earlier chapters, beginning with the general ques‐
tion, Why is my bus always late?, and refining this question to one that is closer to
our goal and that we can investigate with data. We then consider the data scope, such
as how these data were collected and potential sources of biases, and we prepare the
data for analysis. Our understanding of the data scope helps us design a model for
waiting at a bus stop, which we simulate to study this phenomenon.

63

http://jakevdp.github.io
https://oreil.ly/W8Ih5
https://oreil.ly/W8Ih5

Question and Scope
Our original question comes from the experience of a regular bus rider wondering
why their bus is always late. We are not looking for actual reasons for its lateness, like
a traffic jam or maintenance delay. Instead, we want to study patterns in the actual
arrival times of buses at a stop, compared to their scheduled times. This information
will help us better understand what it’s like to wait for the bus.

Bus lines differ across the world and even across a city, so we narrow our investiga‐
tion to one bus stop in the city of Seattle. The data we have are for the stops of Seat‐
tle’s Rapid Ride lines C, D, and E at 3rd Avenue and Pike Street. The Washington
State Transportation Center has provided times for all of the actual and scheduled
stop times of these three bus lines between March 26 and May 27, 2016.

Considering our narrowed scope to buses at one particular stop over a two-month
period and our access to all of the administrative data collected in this window of
time, the population, access frame, and sample are one and the same. Yet, we can
imagine that our analysis might prove useful for other locations in and beyond Seattle
and for other times of the year. If we are lucky, the ideas that we uncover, or the
approach that we take, can be useful to others. For now, we keep a narrowed focus.

Let’s take a look at these data to better understand their structure.

Data Wrangling
Before we start our analysis, we check the quality of the data, simplify the structure
where possible, and derive new measurements that might help us in our analysis. We
cover these types of operations in Chapter 9, so don’t worry about the details of the
code for now. Instead, focus on the differences between the data tables as we clean the
data. We start by loading the data into Python.

The first few rows in the data table are shown here:

bus.head(3)

 OPD_DATE VEHICLE_ID RTE DIR ... STOP_ID STOP_NAME SCH_STOP_TM ACT_STOP_TM
0 2016-03-26 6201 673 S ... 431 3RD AVE & PIKE ST (431) 01:11:57 01:13:19
1 2016-03-26 6201 673 S ... 431 3RD AVE & PIKE ST (431) 23:19:57 23:16:13
2 2016-03-26 6201 673 S ... 431 3RD AVE & PIKE ST (431) 21:19:57 21:18:46

3 rows × 9 columns

(The raw data are available as comma-separated values in a file, which we have loaded
into this table; see Chapter 8 for details on this process.)

64 | Chapter 5: Case Study: Why Is My Bus Always Late?

It looks like some of the columns in the table might be redundant, like the columns
labeled STOP_ID and STOP_NAME. We can find the number of unique values and their
counts to confirm this:

bus[['STOP_ID','STOP_NAME']].value_counts()

STOP_ID STOP_NAME
578 3RD AVE & PIKE ST (578) 19599
431 3RD AVE & PIKE ST (431) 19318
dtype: int64

There are two 3RD AVE & PIKE ST names for the stop. We wonder whether they are
related to the direction of the bus, which we can check against the possible combina‐
tions of direction, stop ID, and stop name:

bus[['DIR','STOP_ID','STOP_NAME']].value_counts()

DIR STOP_ID STOP_NAME
N 578 3RD AVE & PIKE ST (578) 19599
S 431 3RD AVE & PIKE ST (431) 19318
dtype: int64

Indeed, the northern direction corresponds to stop ID 578 and the southern direction
corresponds to stop ID 431. Since we are looking at only one stop in our analysis, we
don’t really need anything more than the direction.

We can also check the number of unique route names:

673 13228
674 13179
675 12510
Name: RTE, dtype: int64

These routes are numbered and don’t match the names C, D, and E from the original
description of the problem. This issue involves another aspect of data wrangling: we
need to dig up information that connects the route letters and numbers. We can get
this info from the Seattle transit site. Yet another part of wrangling is to translate data
values into ones that are easier to understand, so we replace the route numbers with
their letters:

def clean_stops(bus):
 return bus.assign(
 route=bus["RTE"].replace({673: "C", 674: "D", 675: "E"}),
 direction=bus["DIR"].replace({"N": "northbound", "S": "southbound"}),
)

We can also create new columns in the table that help us in our investigations. For
example, we can use the scheduled and actual arrival times to calculate how late a bus
is. Doing this requires some work with date and time formats, which is covered in
Chapter 9.

Data Wrangling | 65

Let’s examine the values of this new quantity to make sure that our calculations are
correct:

 smallest amount late: -12.87 minutes
 greatest amount late: 150.28 minutes
 median amount late: 0.52 minutes

It’s a bit surprising that there are negative values for how late a bus is, but this just
means the bus arrived earlier than scheduled. While the median lateness is only about
half a minute, some of the buses are 2.5 hours late! Let’s take a look at the histogram
of how many minutes late the buses are:

px.histogram(bus, x="minutes_late", nbins=120, width=450, height=300,
 labels={'minutes_late':'Minutes late'})

We saw a similarly shaped histogram in Chapter 4. The distribution of how late the
buses are is highly skewed to the right, but many arrive close to on time.

Finally, we conclude our wrangling by creating a simplified version of the data table.
Since we only need to keep track of the route, direction, scheduled and actual arrival
time, and how late the bus is, we create a smaller table and give the columns names
that are a bit easier to read:

66 | Chapter 5: Case Study: Why Is My Bus Always Late?

bus = bus[["route", "direction", "scheduled", "actual", "minutes_late"]]
bus.head()

 route direction scheduled actual minutes_late
0 C southbound 2016-03-26 01:11:57 2016-03-26 01:13:19 1.37
1 C southbound 2016-03-26 23:19:57 2016-03-26 23:16:13 -3.73
2 C southbound 2016-03-26 21:19:57 2016-03-26 21:18:46 -1.18
3 C southbound 2016-03-26 19:04:57 2016-03-26 19:01:49 -3.13
4 C southbound 2016-03-26 16:42:57 2016-03-26 16:42:39 -0.30

These table manipulations are covered in Chapter 6.

Before we begin to model bus lateness, we want to explore and learn more about
these data. We do that next.

Exploring Bus Times
We learned a lot about the data as we cleaned and simplified it, but before we begin to
model wait time, we want to dig deeper to better understand the phenomenon of bus
lateness. We narrowed our focus to the bus activity at one stop (3rd Avenue and Pike
Street) over a two-month period. And we saw that the distribution of the lateness of a
bus is skewed to the right, with some buses being very late indeed. In this exploratory
phase, we might ask:

• Does the distribution of lateness look the same for all three bus lines?
• Does it matter whether the bus is traveling north or south?
• How does the time of day relate to how late the bus is?
• Are the buses scheduled to arrive at regular intervals throughout the day?

Answering these questions helps us better determine how to model.

Recall from Chapter 4 that we found the median time a bus was late was 3/4 of a
minute. But this doesn’t match the median we calculated for all bus routes and direc‐
tions (1/2 a minute). Let’s check whether that could be due to the focus on north‐
bound line C buses in that chapter. Let’s create histograms of lateness for each of the
six combinations of bus line and direction to address this question and the first two
questions on our list:

Exploring Bus Times | 67

The scale on the y-axis is proportion (or density). This scale makes it easier to com‐
pare the histograms since we are not misled by different counts in the groups. The
range on the x-axis is the same across the six plots, making it easier to detect the dif‐
ferent center and spread of the distributions. (These notions are described in
Chapter 11.)

The northbound and southbound distributions are different for each line. When we
dig deeper into the context, we learn that line C originates in the north and the other
two lines originate in the south. The histograms imply there is greater variability in
arrival times in the second half of the bus routes, which makes sense to us since
delays get compounded as the day progresses.

Next, to explore lateness by time of day, we need to derive a new quantity: the hour of
the day that the bus is scheduled to arrive. Given the variation in route and direction
that we just saw in bus lateness, we again create separate plots for each route and
direction:

68 | Chapter 5: Case Study: Why Is My Bus Always Late?

Indeed, there does appear to be a rush-hour effect, and it seems worse for the evening
rush hour compared to the morning. The northbound C line looks to be the most
impacted.

Lastly, to examine the scheduled frequency of the buses, we need to compute the
intervals between scheduled bus times. We create a new column in our table that con‐
tains the time between the scheduled arrival times for the northbound C buses:

minute = pd.Timedelta('1 minute')
bus_c_n = (
 bus[(bus['route'] == 'C') & (bus['direction'] == 'northbound')]
 .sort_values('scheduled')
 .assign(sched_inter=lambda x: x['scheduled'].diff() / minute)
)
bus_c_n.head(3)

 route direction scheduled actual minutes_late sched_inter
19512 C northbound 2016-03-26 00:00:25 2016-03-26 00:05:01 4.60 NaN
19471 C northbound 2016-03-26 00:30:25 2016-03-26 00:30:19 -0.10 30.0
19487 C northbound 2016-03-26 01:05:25 2016-03-26 01:10:15 4.83 35.0

Let’s examine a histogram of the distribution of inter-arrival times of these buses:

fig = px.histogram(bus_c_n, x='sched_inter',
 title="Bus line C, northbound",
 width=450, height=300)

Exploring Bus Times | 69

fig.update_xaxes(range=[0, 40], title="Time between consecutive buses")
fig.update_layout(margin=dict(t=40))

We see that the buses are scheduled to arrive at different intervals throughout the day.
In this two-month period, about 1,500 of the buses are scheduled to arrive 12 minutes
apart and about 1,400 are supposed to arrive 15 minutes after the previous bus.

We have learned a lot in our exploration of the data and are in a better position to fit
a model. Most notably, if we want to get a clear picture of the experience of waiting
for a bus, we need to take into account the scheduled interval between buses, as well
as the bus line and direction.

Modeling Wait Times
We are interested in modeling the experience of someone waiting at a bus stop. We
could develop a complex model that involves the intervals between scheduled arriv‐
als, the bus line, and direction. Instead, we take a simpler approach and narrow the
focus to one line, one direction, and one scheduled interval. We examine the north‐
bound C line stops that are scheduled to arrive 12 minutes apart:

bus_c_n_12 = bus_c_n[bus_c_n['sched_inter'] == 12]

Both the complex and the narrow approaches are legitimate, but we do not yet have
the tools to approach the complex model (see Chapter 15 for more details on
modeling).

So far, we have examined the distribution of the number of minutes the bus is late.
We create another histogram of this delay for the subset of data that we are analyzing

70 | Chapter 5: Case Study: Why Is My Bus Always Late?

(northbound C line stops that are scheduled to arrive 12 minutes after the previous
bus):

fig = px.histogram(bus_c_n_12, x='minutes_late',
 labels={'minutes_late':'Minutes late'},
 nbins=120, width=450, height=300)

fig.add_annotation(x=20, y=150, showarrow=False,
 text="Line C, northbound
Scheduled arrivals: 12 minutes apart")
fig.update_xaxes(range=[-13, 40])
fig.show()

And let’s calculate the minimum, maximum, and median lateness:

smallest amount late: -10.20 minutes
greatest amount late: 57.00 minutes
median amount late: -0.50 minutes

Interestingly, the northbound buses on the C line that are 12 minutes apart are more
often early than not!

Now let’s revisit our question to confirm that we are on track for answering it. A sum‐
mary of how late the buses are does not quite address the experience of the person
waiting for the bus. When someone arrives at a bus stop, they need to wait for the
next bus to arrive. Figure 5-1 shows an idealization of time passing as passengers and
buses arrive at the bus stop. If people are arriving at the bus stop at random times,
notice that they are more likely to arrive in a time interval where the bus is delayed
because there’s a longer interval between buses. This arrival pattern is an example of
size-biased sampling. So to answer the question of what people experience when
waiting for a bus, we need to do more than summarize how late the bus is.

Modeling Wait Times | 71

Figure 5-1. Idealized timeline with buses arriving (rectangles), passengers arriving (cir‐
cles), and time the rider waits for the next bus to arrive (curly brackets)

We can design a simulation that mimics waiting for a bus over the course of one day,
using the ideas from Chapter 3. To do this, we set up a string of scheduled bus arrivals
that are 12 minutes apart from 6 a.m. to midnight:

scheduled = 12 * np.arange(91)
scheduled

array([0, 12, 24, ..., 1056, 1068, 1080])

Then, for each scheduled arrival, we simulate its actual arrival time by adding a ran‐
dom number of minutes each bus is late. To do this, we choose the minutes late from
the distribution of observed lateness of the actual buses. Notice how we have incorpo‐
rated the real data in our simulation study by using the distribution of actual delays of
the buses that are 12 minutes apart:

minutes_late = bus_c_n_12['minutes_late']
actual = scheduled + np.random.choice(minutes_late, size=91, replace=True)

We need to sort these arrival times because when a bus is super late, another may well
come along before it:

actual.sort()
actual

array([-1.2 , 25.37, 32.2 , ..., 1051.02, 1077. , 1089.43])

We also need to simulate the arrival of people at the bus stop at random times
throughout the day. We can use another, different urn model for the passenger arriv‐
als. For the passengers, we put a marble in the urn with a time on it. These run from
time 0, which stands for 6 a.m., to the arrival of the last bus at midnight, which is
1,068 minutes past 6 a.m. To match the way the bus times are measured in our data,
we make the times 1/100th of a minute apart:

pass_arrival_times = np.arange(100*1068)
pass_arrival_times / 100

array([0. , 0.01, 0.02, ..., 1067.97, 1067.98, 1067.99])

72 | Chapter 5: Case Study: Why Is My Bus Always Late?

Now we can simulate the arrival of, say, five hundred people at the bus stop through‐
out the day. We draw five hundred times from this urn, replacing the marbles
between draws:

sim_arrival_times = (
 np.random.choice(pass_arrival_times, size=500, replace=True) / 100
)
sim_arrival_times.sort()
sim_arrival_times

array([2.06, 3.01, 8.54, ..., 1064. , 1064.77, 1066.42])

To find out how long each individual waits, we look for the soonest bus to arrive after
their sampled time. The difference between these two times (the sampled time of the
person and the soonest bus arrival after that) is how long the person waits:

i = np.searchsorted(actual, sim_arrival_times, side='right')
sim_wait_times = actual[i] - sim_arrival_times
sim_wait_times

array([23.31, 22.36, 16.83, ..., 13. , 12.23, 10.58])

We can set up a complete simulation where we simulate, say, two hundred days of bus
arrivals, and for each day, we simulate five hundred people arriving at the bus stop at
random times throughout the day. In total, that’s 100,000 simulated wait times:

sim_wait_times = []

for day in np.arange(0, 200, 1):
 bus_late = np.random.choice(minutes_late, size=91, replace=True)
 actual = scheduled + bus_late
 actual.sort()
 sim_arrival_times = (
 np.random.choice(pass_arrival_times, size=500, replace=True) / 100
)
 sim_arrival_times.sort()
 i = np.searchsorted(actual, sim_arrival_times, side="right")
 sim_wait_times = np.append(sim_wait_times, actual[i] - sim_arrival_times)

Let’s make a histogram of these simulated wait times to examine the distribution:

fig = px.histogram(x=sim_wait_times, nbins=40,
 histnorm='probability density',
 width=450, height=300)

fig.update_xaxes(title="Simulated wait times for 100,000 passengers")
fig.update_yaxes(title="proportion")
fig.show()

Modeling Wait Times | 73

As we expect, we find a skewed distribution. We can model this with a constant
where we use absolute loss to select the best constant. We saw in Chapter 4 that abso‐
lute loss gives us the median wait time:

print(f"Median wait time: {np.median(sim_wait_times):.2f} minutes")

Median wait time: 6.49 minutes

The median of about six and a half minutes doesn’t seem too long. While our model
captures the typical wait time, we also want to provide an estimate of the variability in
the process. This topic is covered in Chapter 17. We can compute the upper quartile
of wait times to give us a sense of variability:

print(f"Upper quartile: {np.quantile(sim_wait_times, 0.75):.2f} minutes")

Upper quartile: 10.62 minutes

The upper quartile is quite large. It’s undoubtedly memorable when you have to wait
more than 10 minutes for a bus that is supposed to arrive every 12 minutes, and this
happens one in four times you take the bus!

Summary
In our first case study, we have traversed the full lifecycle of data modeling. It might
strike you that such a simple question is not immediately answerable with the data
collected. We needed to combine the data of scheduled and actual arrival times of
buses with a simulation study of riders arriving at the bus stop at random times to
uncover the riders’ waiting experience.

74 | Chapter 5: Case Study: Why Is My Bus Always Late?

This simulation simplified many of the real patterns in bus riding. We focused on one
bus line traveling in one direction with buses arriving at 12-minute intervals. Further,
the exploration of the data revealed that the patterns in lateness correlated with the
time of day, which we have not accounted for in our analysis. Nonetheless, our find‐
ings can still be useful. For example, they confirm that the typical wait time is longer
than half the scheduled interval. And the distribution of wait times has a long right
tail, meaning a rider’s experience may well be impacted by the variability in the
process.

We also saw how deriving new quantities, such as how late a bus is and the time
between buses, and exploring the data can be useful in modeling. Our histograms
showed that the particular line and direction of the bus matter and they need to be
accounted for. We also discovered that the schedules change throughout the day, with
many buses arriving 10, 12, and 15 minutes after another, and some arriving more
frequently or more separated. This observation further informed the modeling stage.

Finally, we used data tools, such as the pandas and plotly libraries, that will be cov‐
ered in later chapters. Our focus here was not on how to manipulate tables or how to
create a plot. Instead, we focused on the lifecycle, connecting questions to data to
modeling to conclusions. In the next chapter, we turn to the practicalities of working
with data tables.

Summary | 75

PART II

Rectangular Data

CHAPTER 6

Working with Dataframes Using pandas

Data scientists work with data stored in tables. This chapter introduces dataframes,
one of the most widely used ways to represent data tables. We also introduce pandas,
the standard Python package for working with dataframes. Here is an example of a
dataframe that holds information about popular dog breeds:

 grooming food_cost kids size

breed
Labrador Retriever weekly 466.0 high medium
German Shepherd weekly 466.0 medium large
Beagle daily 324.0 high small
Golden Retriever weekly 466.0 high medium
Yorkshire Terrier daily 324.0 low small
Bulldog weekly 466.0 medium medium
Boxer weekly 466.0 high medium

In a dataframe, each row represents a single record—in this case, a single dog breed.
Each column represents a feature about the record—for example, the grooming col‐
umn represents how often each dog breed needs to be groomed.

Dataframes have labels for both columns and rows. For instance, this dataframe has a
column labeled grooming and a row labeled German Shepherd. The columns and
rows of a dataframe are ordered—we can refer to the Labrador Retriever row as the
first row of the dataframe.

Within a column, data have the same type. For instance, the cost of food contains
numbers, and the size of the dog consists of categories. But data types can be different
within a row.

Because of these properties, dataframes enable all sorts of useful operations.

79

Data scientists often find themselves working with people from dif‐
ferent backgrounds who use different terms. For instance, com‐
puter scientists say that the columns of a dataframe represent
features of the data, while statisticians call them variables instead.
Other times, people use the same term to refer to slightly different
ideas. Data types in a programming sense refers to how a computer
stores data internally. For instance, the size column has a string
data type in Python. But from a statistical point of view, the type of
the size column is ordered categorical data (ordinal data). We talk
more about this specific distinction in Chapter 10.

In this chapter, we introduce common dataframe operations. Data scientists use the
pandas library when working with dataframes in Python. First, we explain the main
objects that pandas provides: the DataFrame and Series classes. Then we show how
to use pandas to perform common data manipulation tasks, like slicing, filtering,
sorting, grouping, and joining.

Subsetting
This section introduces operations for taking subsets of dataframes. When data scien‐
tists first read in a dataframe, they often want to subset the specific data that they plan
to use. For example, a data scientist can slice out the 10 relevant features from a data‐
frame with hundreds of columns. Or they can filter a dataframe to remove rows with
incomplete data. For the rest of this chapter, we demonstrate dataframe operations
using a dataframe of baby names.

Data Scope and Question
There’s a 2021 New York Times article that talks about Prince Harry and Meghan Mar‐
kle’s unique choice for their new baby daughter’s name: Lilibet. The article has an
interview with Pamela Redmond, an expert on baby names, who talks about interest‐
ing trends in how people name their kids. For example, she says that names that start
with the letter L have become very popular in recent years, while names that start
with the letter J were most popular in the 1970s and 1980s. Are these claims reflected
in data? We can use pandas to find out.

First, we import the package as pd, the canonical abbreviation:

import pandas as pd

We have a dataset of baby names stored in a comma-separated values (CSV) file
called babynames.csv. We use the pd.read_csv function to read the file as a pan
das.DataFrame object:

80 | Chapter 6: Working with Dataframes Using pandas

https://oreil.ly/qL1dt

baby = pd.read_csv('babynames.csv')
baby

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
2020719 Verona F 5 1880
2020720 Vertie F 5 1880
2020721 Wilma F 5 1880

2020722 rows × 4 columns

The data in the baby table comes from the US Social Security Administration (SSA),
which records the baby name and birth sex for birth certificate purposes. The SSA
makes the baby names data available on its website. We’ve loaded this data into the
baby table.

The SSA website has a page that describes the data in more detail. We won’t go in
depth in this chapter about the data’s limitations, but we’ll point out this relevant
information from the website:

All names are from Social Security card applications for births that occurred in the
United States after 1879. Note that many people born before 1937 never applied for a
Social Security card, so their names are not included in our data. For others who did
apply, our records may not show the place of birth, and again their names are not
included in our data.
All data are from a 100% sample of our records on Social Security card applications as
of March 2021.

It’s also important to point out that at the time of this writing, the SSA dataset only
provides the binary options of male and female. We hope that in the future, national
datasets like this one will provide more inclusive options.

Dataframes and Indices
Let’s examine the baby dataframe in more detail. A dataframe has rows and columns.
Every row and column has a label, as highlighted in Figure 6-1.

Subsetting | 81

https://oreil.ly/EhTlP
https://oreil.ly/jzCVF

Figure 6-1. The baby dataframe has labels for both rows and columns (boxed)

By default, pandas assigns row labels as incrementing numbers starting from 0. In
this case, the data at the row labeled 0 and column labeled Name has the data 'Liam'.

Dataframes can also have strings as row labels. Figure 6-2 shows a dataframe of dog
data where the row labels are strings.

Figure 6-2. Row labels in dataframes can also be strings, as in this example, in which
each row is labeled using the dog breed name

The row labels have a special name. We call them the index of a dataframe, and pan
das stores the row labels in a special pd.Index object. We won’t discuss the pd.Index
object since it’s less common to manipulate the index itself. For now, it’s important to
remember that even though the index looks like a column of data, the index really
represents row labels, not data. For instance, the dataframe of dog breeds has four
columns of data, not five, since the index doesn’t count as a column.

82 | Chapter 6: Working with Dataframes Using pandas

Slicing
Slicing is an operation that creates a new dataframe by taking a subset of rows or col‐
umns out of another dataframe. Think about slicing a tomato—slices can go both
vertically and horizontally. To take slices of a dataframe in pandas, we use the .loc
and .iloc properties. Let’s start with .loc.

Here’s the full baby dataframe:

baby

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
2020719 Verona F 5 1880
2020720 Vertie F 5 1880
2020721 Wilma F 5 1880

2020722 rows × 4 columns

.loc lets us select rows and columns using their labels. For example, to get the data in
the row labeled 1 and column labeled Name:

The first argument is the row label
↓
baby.loc[1, 'Name']
↑
The second argument is the column label

'Noah'

Notice that .loc needs square brackets; running baby.loc(1,
'Name') will result in an error.

To slice out multiple rows or columns, we can use Python slice syntax instead of indi‐
vidual values:

baby.loc[0:3, 'Name':'Count']

 Name Sex Count
0 Liam M 19659
1 Noah M 18252

Subsetting | 83

 Name Sex Count
2 Oliver M 14147
3 Elijah M 13034

To get an entire column of data, we can pass an empty slice as the first argument:

baby.loc[:, 'Count']

0 19659
1 18252
2 14147
 ...
2020719 5
2020720 5
2020721 5
Name: Count, Length: 2020722, dtype: int64

Notice that the output of this doesn’t look like a dataframe, and it’s not. Selecting out
a single row or column of a dataframe produces a pd.Series object:

counts = baby.loc[:, 'Count']
counts.__class__.__name__

'Series'

What’s the difference between a pd.Series object and a pd.DataFrame object? Essen‐
tially, a pd.DataFrame is two-dimensional—it has rows and columns and represents a
table of data. A pd.Series is one-dimensional—it represents a list of data. pd.Series
and pd.DataFrame objects have many methods in common, but they really represent
two different things. Confusing the two can cause bugs and confusion.

To select specific columns of a dataframe, pass a list into .loc. Here’s the original
dataframe:

baby

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
2020719 Verona F 5 1880
2020720 Vertie F 5 1880
2020721 Wilma F 5 1880

2020722 rows × 4 columns

And here's the dataframe with only Name and Year columns
baby.loc[:, ['Name', 'Year']]

84 | Chapter 6: Working with Dataframes Using pandas

└──────┬───────┘
list of column labels

 Name Year
0 Liam 2020
1 Noah 2020
2 Oliver 2020
...
2020719 Verona 1880
2020720 Vertie 1880
2020721 Wilma 1880

2020722 rows × 2 columns

Selecting columns is very common, so there’s a shorthand:

Shorthand for baby.loc[:, 'Name']
baby['Name']

0 Liam
1 Noah
2 Oliver
 ...
2020719 Verona
2020720 Vertie
2020721 Wilma
Name: Name, Length: 2020722, dtype: object

Shorthand for baby.loc[:, ['Name', 'Count']]
baby[['Name', 'Count']]

 Name Count
0 Liam 19659
1 Noah 18252
2 Oliver 14147
...
2020719 Verona 5
2020720 Vertie 5
2020721 Wilma 5

2020722 rows × 2 columns

Slicing using .iloc works similarly to .loc, except that .iloc uses the positions of
rows and columns rather than labels. It’s easiest to show the difference between .iloc
and .loc when the dataframe index has strings, so for demonstration purposes, let’s
look at a dataframe with information on dog breeds:

Subsetting | 85

dogs = pd.read_csv('dogs.csv', index_col='breed')
dogs

 grooming food_cost kids size

breed
Labrador Retriever weekly 466.0 high medium
German Shepherd weekly 466.0 medium large
Beagle daily 324.0 high small
Golden Retriever weekly 466.0 high medium
Yorkshire Terrier daily 324.0 low small
Bulldog weekly 466.0 medium medium
Boxer weekly 466.0 high medium

To get the first three rows and the first two columns by position, use .iloc:

dogs.iloc[0:3, 0:2]

 grooming food_cost

breed
Labrador Retriever weekly 466.0
German Shepherd weekly 466.0
Beagle daily 324.0

The same operation using .loc requires us to use the dataframe labels:

dogs.loc['Labrador Retriever':'Beagle', 'grooming':'food_cost']

 grooming food_cost

breed
Labrador Retriever weekly 466.0
German Shepherd weekly 466.0
Beagle daily 324.0

Next, we’ll look at filtering rows.

Filtering Rows
So far, we’ve shown how to use .loc and .iloc to slice a dataframe using labels and
positions.

However, data scientists often want to filter rows—they want to take subsets of rows
using some criteria. Let’s say we want to find the most popular baby names in 2020.
To do this, we can filter rows to keep only the rows where the Year is 2020.

86 | Chapter 6: Working with Dataframes Using pandas

To filter, we’d like to check whether each value in the Year column is equal to 1970
and then keep only those rows.

To compare each value in Year, we slice out the column and make a boolean compar‐
ison (this is similar to what we’d do with a numpy array). Here’s the dataframe for
reference:

baby

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
2020719 Verona F 5 1880
2020720 Vertie F 5 1880
2020721 Wilma F 5 1880

2020722 rows × 4 columns

Get a Series with the Year data
baby['Year']

0 2020
1 2020
2 2020
 ...
2020719 1880
2020720 1880
2020721 1880
Name: Year, Length: 2020722, dtype: int64

Compare with 2020
baby['Year'] == 2020

0 True
1 True
2 True
 ...
2020719 False
2020720 False
2020721 False
Name: Year, Length: 2020722, dtype: bool

Notice that a boolean comparison on a Series gives a Series of booleans. This is
nearly equivalent to writing:

is_2020 = []
for value in baby['Year']:
 is_2020.append(value == 2020)

Subsetting | 87

But the boolean comparison is easier to write and much faster to execute than a for
loop.

Now we tell pandas to keep only the rows where the comparison evaluated to True:

baby.loc[baby['Year'] == 2020, :]

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
31267 Zylynn F 5 2020
31268 Zynique F 5 2020
31269 Zynlee F 5 2020

31270 rows × 4 columns

Passing a Series of booleans into .loc only keeps rows where the
Series has a True value.

Filtering has a shorthand. This computes the same table as the preceding snippet
without using .loc:

baby[baby['Year'] == 2020]

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
31267 Zylynn F 5 2020
31268 Zynique F 5 2020
31269 Zynlee F 5 2020

31270 rows × 4 columns

Finally, to find the most common names in 2020, sort the dataframe by Count in
descending order. Wrapping a long expression in parentheses lets us easily add line
breaks to make it more readable:

(baby[baby['Year'] == 2020]
 .sort_values('Count', ascending=False)

88 | Chapter 6: Working with Dataframes Using pandas

 .head(7) # take the first seven rows
)

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
13911 Emma F 15581 2020
2 Oliver M 14147 2020
13912 Ava F 13084 2020
3 Elijah M 13034 2020
13913 Charlotte F 13003 2020

We see that Liam, Noah, and Emma were the most popular baby names in 2020.

Example: How Recently Has Luna Become a Popular Name?
The New York Times article mentions that the name Luna was almost nonexistent
before 2000 but has since grown to become a very popular name for girls. When
exactly did Luna become popular? We can check this using slicing and filtering.
When approaching a data manipulation task, we recommend breaking the problem
down into smaller steps. For example, we could think:

1. Filter: keep only rows with 'Luna' in the Name column.
2. Filter: keep only rows with 'F' in the Sex column.
3. Slice: keep the Count and Year columns.

Now it’s a matter of translating each step into code:

luna = baby[baby['Name'] == 'Luna'] # [1]
luna = luna[luna['Sex'] == 'F'] # [2]
luna = luna[['Count', 'Year']] # [3]
luna

 Count Year
13923 7770 2020
45366 7772 2019
77393 6929 2018
...
2014083 17 1883
2018187 18 1881
2020223 15 1880

128 rows × 2 columns

Subsetting | 89

In this book, we use a library called plotly for plotting. We won’t cover plotting in
depth here since we talk more about it in Chapter 11. For now, we use px.line() to
make a simple line plot:

px.line(luna, x='Year', y='Count', width=350, height=250)

It’s just as the article says. Luna wasn’t popular at all until the year 2000 or so. In other
words, if someone tells you that their name is Luna, you can take a pretty good guess
at their age even without any other information about them!

Just for fun, here’s the same plot for the name Siri:

siri = (baby.query('Name == "Siri"')
 .query('Sex == "F"'))
px.line(siri, x='Year', y='Count', width=350, height=250)

90 | Chapter 6: Working with Dataframes Using pandas

Using .query is similar to using .loc with a boolean series.
query() has more restrictions on filtering but can be convenient as
a shorthand.

Why might the popularity have dropped so suddenly after 2010? Well, Siri happens to
be the name of Apple’s voice assistant and was introduced in 2011. Let’s draw a line
for the year 2011 and take a look:

fig = px.line(siri, x="Year", y="Count", width=350, height=250)
fig.add_vline(
 x=2011, line_color="red", line_dash="dashdot", line_width=4, opacity=0.7
)

It looks like parents don’t want their kids to be confused when other people say “Hey
Siri” to their phones.

In this section, we introduced dataframes in pandas. We covered the common ways
that data scientists subset dataframes—slicing with labels and filtering using a
boolean condition. In the next section, we explain how to aggregate rows together.

Aggregating
This section introduces operations for aggregating rows in a dataframe. Data scien‐
tists aggregate rows together to make summaries of data. For instance, a dataset con‐
taining daily sales can be aggregated to show monthly sales instead. This section
introduces grouping and pivoting, two common operations for aggregating data.

We work with the baby names data, as introduced in the previous section:

baby = pd.read_csv('babynames.csv')
baby

Aggregating | 91

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
2020719 Verona F 5 1880
2020720 Vertie F 5 1880
2020721 Wilma F 5 1880

2020722 rows × 4 columns

Basic Group-Aggregate
Let’s say we want to find out the total number of babies born as recorded in this data.
This is simply the sum of the Count column:

baby['Count'].sum()

352554503

Summing up the name counts is one simple way to aggregate the data—it combines
data from multiple rows.

But let’s say we instead want to answer a more interesting question: are US births
trending upward over time? To answer this question, we can sum the Count column
within each year rather than taking the sum over the entire dataset. In other words,
we split the data into groups based on Year, then sum the Count values within each
group. This process is depicted in Figure 6-3.

Figure 6-3. A depiction of grouping and then aggregating for example data

92 | Chapter 6: Working with Dataframes Using pandas

We call this operation grouping followed by aggregating. In pandas, we write:

baby.groupby('Year')['Count'].sum()

Year
1880 194419
1881 185772
1882 213385
 ...
2018 3487193
2019 3437438
2020 3287724
Name: Count, Length: 141, dtype: int64

Notice that the code is nearly the same as the nongrouped version, except that it
starts with a call to .groupby('Year').

The result is a pd.Series with the total number of babies born for each year in the
data. Notice that the index of this series contains the unique Year values. Now we can
plot the counts over time:

counts_by_year = baby.groupby('Year')['Count'].sum().reset_index()
px.line(counts_by_year, x='Year', y='Count', width=350, height=250)

What do we see in this plot? First, we notice that there seem to be suspiciously few
babies born before 1920. One likely explanation is that the SSA was created in 1935,
so its data for prior births could be less complete.

We also notice the dip when World War II began in 1939, and the postwar baby
boomer era from 1946 to 1964.

Here’s the basic recipe for grouping in pandas:

(baby # the dataframe
 .groupby('Year') # column(s) to group
 ['Count'] # column(s) to aggregate

Aggregating | 93

 .sum() # how to aggregate
)

Example: Using .value_counts()
One of the more common dataframe tasks is to count the number of times every
unique item in a column appears. For example, we might be interested in the number
of times each name appears in the following classroom dataframe:

classroom

 name
0 Eden
1 Sachit
2 Eden
3 Sachit
4 Sachit
5 Luke

One way to do this is to use our grouping recipe with the .size() aggregation
function:

(classroom
 .groupby('name')
 ['name']
 .size()
)

name
Eden 2
Luke 1
Sachit 3
Name: name, dtype: int64

This operation is so common that pandas provides a shorthand—
the .value_counts() method for pd.Series objects:

classroom['name'].value_counts()

name
Sachit 3
Eden 2
Luke 1
Name: count, dtype: int64

By default, the .value_counts() method will sort the resulting series from highest to
lowest number, making it convenient to see the most and least common values. We
point out this method because we use it often in other chapters of the book.

94 | Chapter 6: Working with Dataframes Using pandas

Grouping on Multiple Columns
We pass multiple columns into .groupby as a list to group by multiple columns at
once. This is useful when we need to further subdivide our groups. For example, we
can group by both year and sex to see how many male and female babies were born
over time:

counts_by_year_and_sex = (baby
 .groupby(['Year', 'Sex']) # Arg to groupby is a list of column names
 ['Count']
 .sum()
)
counts_by_year_and_sex

Year Sex
1880 F 83929
 M 110490
1881 F 85034
 ...
2019 M 1785527
2020 F 1581301
 M 1706423
Name: Count, Length: 282, dtype: int64

Notice how the code closely follows the grouping recipe.

The counts_by_year_and_sex series has what we call a multilevel index with two lev‐
els, one for each column that was grouped. It’s a bit easier to see if we convert the
series to a dataframe. The result only has one column:

counts_by_year_and_sex.to_frame()

 Count

Year Sex
1880 F 83929

M 110490
1881 F 85034
...
2019 M 1785527
2020 F 1581301

M 1706423

282 rows × 1 columns

There are two levels to the index because we grouped by two columns. It can be a bit
tricky to work with multilevel indices, so we can reset the index to go back to a data‐
frame with a single index:

counts_by_year_and_sex.reset_index()

Aggregating | 95

 Year Sex Count
0 1880 F 83929
1 1880 M 110490
2 1881 F 85034
...
279 2019 M 1785527
280 2020 F 1581301
281 2020 M 1706423

282 rows × 3 columns

Custom Aggregation Functions
After grouping, pandas gives us flexible ways to aggregate the data. So far, we’ve seen
how to use .sum() after grouping:

(baby
 .groupby('Year')
 ['Count']
 .sum() # aggregate by summing
)

Year
1880 194419
1881 185772
1882 213385
 ...
2018 3487193
2019 3437438
2020 3287724
Name: Count, Length: 141, dtype: int64

pandas also supplies other aggregation functions, like .mean(), .size(),
and .first(). Here’s the same grouping using .max():

(baby
 .groupby('Year')
 ['Count']
 .max() # aggregate by taking the max within each group
)

Year
1880 9655
1881 8769
1882 9557
 ...
2018 19924
2019 20555
2020 19659
Name: Count, Length: 141, dtype: int64

96 | Chapter 6: Working with Dataframes Using pandas

But sometimes pandas doesn’t have the exact aggregation function we want to use. In
these cases, we can define and use a custom aggregation function. pandas lets us do
this through .agg(fn), where fn is a function that we define.

For instance, if we want to find the difference between the largest and smallest values
within each group (the range of the data), we could first define a function called
data_range, then pass that function into .agg(). The input to this function is a
pd.Series object containing a single column of data. It gets called once for each
group:

def data_range(counts):
 return counts.max() - counts.min()

(baby
 .groupby('Year')
 ['Count']
 .agg(data_range) # aggregate using custom function
)

Year
1880 9650
1881 8764
1882 9552
 ...
2018 19919
2019 20550
2020 19654
Name: Count, Length: 141, dtype: int64

We start by defining a count_unique function that counts the number of unique val‐
ues in a series. Then we pass that function into .agg(). Since this function is short,
we could use a lambda instead:

def count_unique(s):
 return len(s.unique())

unique_names_by_year = (baby
 .groupby('Year')
 ['Name']
 .agg(count_unique) # aggregate using the custom count_unique function
)
unique_names_by_year

Year
1880 1889
1881 1829
1882 2012
 ...
2018 29619
2019 29417
2020 28613
Name: Name, Length: 141, dtype: int64

Aggregating | 97

px.line(unique_names_by_year.reset_index(),
 x='Year', y='Name',
 labels={'Name': '# unique names'},
 width=350, height=250)

We see that the number of unique names has generally increased over time, even
though the number of babies born annually has plateaued since the 1960s.

Pivoting
Pivoting is essentially a convenient way to arrange the results of a group and aggrega‐
tion when grouping with two columns. Earlier in this section we grouped the baby
names data by year and sex:

counts_by_year_and_sex = (baby
 .groupby(['Year', 'Sex'])
 ['Count']
 .sum()
)
counts_by_year_and_sex.to_frame()

 Count

Year Sex
1880 F 83929

M 110490
1881 F 85034
...
2019 M 1785527
2020 F 1581301

M 1706423

98 | Chapter 6: Working with Dataframes Using pandas

282 rows × 1 columns

This produces a pd.Series with the counts. We can also imagine the same data with
the Sex index level “pivoted” to the columns of a dataframe. It’s easier to see with an
example:

mf_pivot = pd.pivot_table(
 baby,
 index='Year', # Column to turn into new index
 columns='Sex', # Column to turn into new columns
 values='Count', # Column to aggregate for values
 aggfunc=sum) # Aggregation function
mf_pivot

Sex F M

Year
1880 83929 110490
1881 85034 100738
1882 99699 113686
...
2018 1676884 1810309
2019 1651911 1785527
2020 1581301 1706423

141 rows × 2 columns

As we can see in mf_pivot table, dataframe indexes can also be
named. To read the output, it’s important to notice that the data‐
frame has two columns, M and F, stored in an index named Sex.
Likewise, the dataframe has 141 rows, each with their own label.
These labels are stored in an index named Year. Here, Sex and Year
are the names of the dataframe indexes, and are not row or column
labels themselves.

Notice that the data values are identical in the pivot table and the table produced
with .groupby(); the values are just arranged differently. Pivot tables are useful for
quickly summarizing data using two attributes and are often seen in articles and
papers.

The px.line() function also happens to work well with pivot tables, since the func‐
tion draws one line for each column of data in the table:

fig = px.line(mf_pivot, width=350, height=250)
fig.update_traces(selector=1, line_dash='dashdot')
fig.update_yaxes(title='Value')

Aggregating | 99

This section covered common ways to aggregate data in pandas using the .groupby()
function with one or more columns, or using the pd.pivot_table() function. In the
next section, we’ll explain how to join dataframes together.

Joining
Data scientists very frequently want to join two or more dataframes together in order
to connect data values across dataframes. For instance, an online bookstore might
have one dataframe with the books each user has ordered and a second dataframe
with the genres of each book. By joining the two dataframes together, the data scien‐
tist can see what genres each user prefers.

We’ll continue looking at the baby names data. We’ll use joins to check some trends
mentioned in the New York Times article about baby names. The article talks about
how certain categories of names have become more or less popular over time. For
instance, it mentions that mythological names like Julius and Cassius have become
popular, while baby boomer names like Susan and Debbie have become less popular.
How has the popularity of these categories changed over time?

We’ve taken the names and categories in the NYT article and put them in a small
dataframe:

nyt = pd.read_csv('nyt_names.csv')
nyt

 nyt_name category
0 Lucifer forbidden
1 Lilith forbidden
2 Danger forbidden
...

100 | Chapter 6: Working with Dataframes Using pandas

https://oreil.ly/qL1dt

 nyt_name category
20 Venus celestial
21 Celestia celestial
22 Skye celestial

23 rows × 2 columns

To see how popular the categories of names are, we join the nyt dataframe with the
baby dataframe to get the name counts from baby:

baby = pd.read_csv('babynames.csv')
baby

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
2020719 Verona F 5 1880
2020720 Vertie F 5 1880
2020721 Wilma F 5 1880

2020722 rows × 4 columns

For intuition, we can imagine going down each row in baby and asking: is this name
in the nyt table? If so, then add the value in the category column to the row. This is
the basic idea behind a join. Let’s look at a few examples on smaller dataframes first.

Inner Joins
We start by making smaller versions of the baby and nyt tables so that it’s easier to see
what happens when we join tables together:

nyt_small

 nyt_name category
0 Karen boomer
1 Julius mythology
2 Freya mythology

Joining | 101

baby_small

 Name Sex Count Year
0 Noah M 18252 2020
1 Julius M 960 2020
2 Karen M 6 2020
3 Karen F 325 2020
4 Noah F 305 2020

To join tables in pandas, we’ll use the .merge() method:

baby_small.merge(nyt_small,
 left_on='Name', # column in left table to match
 right_on='nyt_name') # column in right table to match

 Name Sex Count Year nyt_name category
0 Julius M 960 2020 Julius mythology
1 Karen M 6 2020 Karen boomer
2 Karen F 325 2020 Karen boomer

Notice that the new table has the columns of both the baby_small and nyt_small
tables. The rows with the name Noah are gone. And the remaining rows have their
matching category from nyt_small.

Readers should also be aware that pandas has a .join() method
for joining two dataframes together. However, the .merge()

method has more flexibility for how the dataframes are joined,
which is why we focus on .merge(). We encourage readers to con‐
sult the pandas documentation for the exact difference between the
two.

When we join two tables together, we tell pandas the column(s) from each table that
we want to use to make the join (the left_on and right_on arguments). pandas
matches rows together when the values in the joining columns match, as shown in
Figure 6-4.

102 | Chapter 6: Working with Dataframes Using pandas

Figure 6-4. To join, pandas matches rows using the values in the Name and nyt_name
columns, dropping rows that don’t have matching values

By default, pandas does an inner join. If either table has rows that don’t have matches
in the other table, pandas drops those rows from the result. In this case, the Noah
rows in baby_small don’t have matches in nyt_small, so they are dropped. Also, the
Freya row in nyt_small doesn’t have matches in baby_small, so it’s dropped as well.
Only the rows with a match in both tables stay in the final result.

Left, Right, and Outer Joins
We sometimes want to keep rows without a match instead of dropping them entirely.
There are other types of joins—left, right, and outer—that keep rows even when they
don’t have a match.

In a left join, rows in the left table without a match are kept in the final result, as
shown in Figure 6-5.

Figure 6-5. In a left join, rows in the left table that don’t have matching values are kept

Joining | 103

To do a left join in pandas, use how='left' in the call to .merge():

baby_small.merge(nyt_small,
 left_on='Name',
 right_on='nyt_name',
 how='left') # left join instead of inner

 Name Sex Count Year nyt_name category
0 Noah M 18252 2020 NaN NaN
1 Julius M 960 2020 Julius mythology
2 Karen M 6 2020 Karen boomer
3 Karen F 325 2020 Karen boomer
4 Noah F 305 2020 NaN NaN

Notice that the Noah rows are kept in the final table. Since those rows didn’t have a
match in the nyt_small dataframe, the join leaves NaN values in the nyt_name and
category columns. Also, notice that the Freya row in nyt_small is still dropped.

A right join works similarly to the left join, except that nonmatching rows in the right
table are kept instead of the left table:

baby_small.merge(nyt_small,
 left_on='Name',
 right_on='nyt_name',
 how='right')

 Name Sex Count Year nyt_name category
0 Karen M 6.0 2020.0 Karen boomer
1 Karen F 325.0 2020.0 Karen boomer
2 Julius M 960.0 2020.0 Julius mythology
3 NaN NaN NaN NaN Freya mythology

Finally, an outer join keeps rows from both tables even when they don’t have a match:

baby_small.merge(nyt_small,
 left_on='Name',
 right_on='nyt_name',
 how='outer')

 Name Sex Count Year nyt_name category
0 Noah M 18252.0 2020.0 NaN NaN
1 Noah F 305.0 2020.0 NaN NaN
2 Julius M 960.0 2020.0 Julius mythology
3 Karen M 6.0 2020.0 Karen boomer
4 Karen F 325.0 2020.0 Karen boomer
5 NaN NaN NaN NaN Freya mythology

104 | Chapter 6: Working with Dataframes Using pandas

Example: Popularity of NYT Name Categories
Now let’s return to the full dataframes baby and nyt. .head() slices out the first few
rows, which is convenient for saving space:

baby.head(2)

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020

nyt.head(2)

 nyt_name category
0 Lucifer forbidden
1 Lilith forbidden

We want to know how the popularity of name categories in nyt has changed over
time. To answer this question:

1. Inner join baby with nyt.
2. Group the table by category and Year.
3. Aggregate the counts using a sum:

cate_counts = (
 baby.merge(nyt, left_on='Name', right_on='nyt_name') # [1]
 .groupby(['category', 'Year']) # [2]
 ['Count'] # [3]
 .sum() # [3]
 .reset_index()
)
cate_counts

 category Year Count
0 boomer 1880 292
1 boomer 1881 298
2 boomer 1882 326
...
647 mythology 2018 2944
648 mythology 2019 3320
649 mythology 2020 3489

650 rows × 3 columns

Joining | 105

Now we can plot the popularity of boomer names and mythology names:

As the NYT article claims, baby boomer names have become less popular since 2000,
while mythology names have become more popular.

We can also plot the popularities of all the categories at once. Take a look at the fol‐
lowing plots and see whether they support the claims made in the New York Times
article:

In this section, we introduced joins for dataframes. When joining dataframes
together, we match rows using the .merge() function. It’s important to consider the
type of join (inner, left, right, or outer) when joining dataframes. In the next section,
we’ll explain how to transform values in a dataframe.

106 | Chapter 6: Working with Dataframes Using pandas

Transforming
Data scientists transform dataframe columns when they need to change each value in
a feature in the same way. For example, if a feature contains heights of people in feet,
a data scientist might want to transform the heights to centimeters. In this section,
we’ll introduce apply, an operation that transforms columns of data using a user-
defined function:

baby = pd.read_csv('babynames.csv')
baby

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
2020719 Verona F 5 1880
2020720 Vertie F 5 1880
2020721 Wilma F 5 1880

2020722 rows × 4 columns

In the baby names New York Times article, Pamela mentions that names starting with
the letter L or K became popular after 2000. On the other hand, names starting with
the letter J peaked in popularity in the 1970s and 1980s and dropped off in popularity
since. We can verify these claims using the baby dataset.

We approach this problem using the following steps:

1. Transform the Name column into a new column that contains the first letters of
each value in Name.

2. Group the dataframe by the first letter and year.
3. Aggregate the name counts by summing.

To complete the first step, we’ll apply a function to the Name column.

Apply
pd.Series objects contain an .apply() method that takes in a function and applies it
to each value in the series. For instance, to find the lengths of each name, we apply
the len function:

names = baby['Name']
names.apply(len)

Transforming | 107

0 4
1 4
2 6
 ..
2020719 6
2020720 6
2020721 5
Name: Name, Length: 2020722, dtype: int64

To extract the first letter of each name, we define a custom function and pass it
into .apply(). The argument to the function is an individual value in the series:

def first_letter(string):
 return string[0]

names.apply(first_letter)

0 L
1 N
2 O
 ..
2020719 V
2020720 V
2020721 W
Name: Name, Length: 2020722, dtype: object

Using .apply() is similar to using a for loop. The preceding code is roughly equiva‐
lent to writing:

result = []
for name in names:
 result.append(first_letter(name))

Now we can assign the first letters to a new column in the dataframe:

letters = baby.assign(Firsts=names.apply(first_letter))
letters

 Name Sex Count Year Firsts
0 Liam M 19659 2020 L
1 Noah M 18252 2020 N
2 Oliver M 14147 2020 O
...
2020719 Verona F 5 1880 V
2020720 Vertie F 5 1880 V
2020721 Wilma F 5 1880 W

2020722 rows × 5 columns

108 | Chapter 6: Working with Dataframes Using pandas

To create a new column in a dataframe, you might also encounter
this syntax:

baby['Firsts'] = names.apply(first_letter)

This mutates the baby table by adding a new column called Firsts.
In the preceding code, we use .assign(), which doesn’t mutate the
baby table itself; it creates a new dataframe instead. Mutating data‐
frames isn’t wrong but can be a common source of bugs. Because of
this, we’ll mostly use .assign() in this book.

Example: Popularity of “L” Names
Now we can use the letters dataframe to see the popularity of first letters over time:

letter_counts = (letters
 .groupby(['Firsts', 'Year'])
 ['Count']
 .sum()
 .reset_index()
)
letter_counts

 Firsts Year Count
0 A 1880 16740
1 A 1881 16257
2 A 1882 18790
...
3638 Z 2018 55996
3639 Z 2019 55293
3640 Z 2020 54011

3641 rows × 3 columns

fig = px.line(letter_counts.loc[letter_counts['Firsts'] == 'L'],
 x='Year', y='Count', title='Popularity of "L" names',
 width=350, height=250)
fig.update_layout(margin=dict(t=30))

Transforming | 109

The plot shows that L names were popular in the 1960s, dipped in the decades after,
but have indeed resurged in popularity since 2000.

What about J names?

fig = px.line(letter_counts.loc[letter_counts['Firsts'] == 'J'],
 x='Year', y='Count', title='Popularity of "J" names',
 width=350, height=250)
fig.update_layout(margin=dict(t=30))

The NYT article says that J names were popular in the 1970s and ’80s. The plot agrees
and shows that they have become less popular since 2000.

The Price of Apply
The power of .apply() is its flexibility—you can call it with any function that takes in
a single data value and outputs a single data value.

110 | Chapter 6: Working with Dataframes Using pandas

Its flexibility has a price, though. Using .apply() can be slow, since pandas can’t opti‐
mize arbitrary functions. For example, using .apply() for numeric calculations is
much slower than using vectorized operations directly on pd.Series objects:

%%timeit

Calculate the decade using vectorized operators
baby['Year'] // 10 * 10

9.66 ms ± 755 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%%timeit

def decade(yr):
 return yr // 10 * 10

Calculate the decade using apply
baby['Year'].apply(decade)

658 ms ± 49.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The version using .apply() is 30 times slower! For numeric operations in particular,
we recommend operating on pd.Series objects directly.

In this section, we introduced data transformations. To transform values in a data‐
frame, we commonly use the .apply() and .assign() functions. In the next section,
we’ll compare dataframes with other ways to represent and manipulate data tables.

How Are Dataframes Different from Other
Data Representations?
Dataframes are just one way to represent data stored in a table. In practice, data sci‐
entists encounter many other types of data tables, like spreadsheets, matrices, and
relations. In this section, we’ll compare and contrast the dataframe with other repre‐
sentations to explain why dataframes have become so widely used for data analysis.
We’ll also point out scenarios where other representations might be more
appropriate.

Dataframes and Spreadsheets
Spreadsheets are computer applications in which users can enter data in a grid and
use formulas to perform calculations. One well-known example today is Microsoft
Excel, although spreadsheets date back to at least 1979 with VisiCalc. Spreadsheets
make it easy to see and directly manipulate data since spreadsheet formulas can auto‐
matically recalculate results whenever the data change. In contrast, dataframe code
typically needs to be manually rerun when datasets are updated. These properties
make spreadsheets highly popular—by a 2005 estimate, there are over 55 million
spreadsheet users compared to 3 million professional programmers in industry.

How Are Dataframes Different from Other Data Representations? | 111

https://doi.org/10.1109/MAHC.2007.4338439
https://doi.org/10.1109/VLHCC.2005.34

Dataframes have several key advantages over spreadsheets. Writing dataframe code in
a computational notebook like Jupyter naturally produces a data lineage. Someone
who opens the notebook can see the input files for the notebook and how the data
were changed. Spreadsheets do not make a data lineage visible; if a person manually
edits data values in a cell, it can be difficult for future users to see which values were
manually edited and how they were edited. Dataframes can handle larger datasets
than spreadsheets, and users can also use distributed programming tools to work
with huge datasets that would be very hard to load into a spreadsheet.

Dataframes and Matrices
A matrix is a two-dimensional array of data used primarily for linear algebra opera‐
tions. In this next example, X is a matrix with three rows and two columns:

X =
1 0
0 4
0 0

Matrices are mathematical objects defined by the operators that they allow. For
instance, matrices can be added or multiplied together. Matrices also have a trans‐
pose. These operators have very useful properties that data scientists rely on for statis‐
tical modeling.

One important difference between a matrix and a dataframe is that when matrices are
treated as mathematical objects, they can only contain numbers. Dataframes, on the
other hand, can also have other types of data, like text. This makes dataframes more
useful for loading and processing raw data that may contain all kinds of data types. In
practice, data scientists often load data into dataframes, then manipulate the data into
matrix form. In this book, we’ll generally use dataframes for exploratory data analysis
and data cleaning, then process the data into matrices for machine learning models.

Data scientists refer to matrices not only as mathematical objects
but also as program objects. For instance, the R programming lan‐
guage has a matrix object, while in Python we could represent a
matrix using a two-dimensional numpy array. Matrices as imple‐
mented in Python and R can contain other data types besides num‐
bers, but they lose mathematical properties when doing so. This is
yet another example of how domains can refer to different things
with the same term.

112 | Chapter 6: Working with Dataframes Using pandas

Dataframes and Relations
A relation is a data table representation used in database systems, especially SQL sys‐
tems like SQLite and PostgreSQL. (We cover relations and SQL in Chapter 7.) Rela‐
tions share many similarities with dataframes; both use rows to represent records and
columns to represent features. Both have column names, and data within a column
have the same type.

One key advantage of dataframes is that they don’t require rows to represent records
and columns to represent features. Many times, raw data don’t come in a convenient
format that can directly be put into a relation. In these scenarios, data scientists use
the dataframe to load and process data since dataframes are more flexible in this
regard. Often, data scientists will load raw data into a dataframe, then process the
data into a format that can easily be stored in a relation.

One key advantage that relations have over dataframes is that relations are used by
relational database systems like PostgreSQL, which have highly useful features for
data storage and management. Consider a data scientist at a company that runs a
large social media website. The database might hold data that is far too large to read
into a pandas dataframe all at once; instead, data scientists use SQL queries to subset
and aggregate data since database systems are more capable of handling large data‐
sets. Also, website users constantly update their data by making posts, uploading pic‐
tures, and editing their profiles. Here, database systems let data scientists reuse their
existing SQL queries to update their analyses with the latest data rather than having
to repeatedly download large CSV files.

Summary
In this chapter, we explained what dataframes are, why they’re useful, and how to
work with them using pandas code. Subsetting, aggregating, joining, and transform‐
ing are useful in nearly every data analysis. We’ll rely on these operations often in the
rest of the book, especially in Chapters 8, 9, and 10.

Summary | 113

https://oreil.ly/3zXyH

CHAPTER 7

Working with Relations Using SQL

In Chapter 6, we used dataframes to represent tables of data. This chapter introduces
relations, another widely used way to represent data tables. We also introduce SQL,
the standard programming language for working with relations. Here’s an example of
a relation that holds information about popular dog breeds.

Like dataframes, each row in a relation represents a single record—in this case, a sin‐
gle dog breed. Each column represents a feature about the record—for example, the
grooming column represents how often each dog breed needs to be groomed.

Both relations and dataframes have labels for each column in the table. However, one
key difference is that the rows in a relation don’t have labels, while rows in a data‐
frame do.

In this chapter, we demonstrate common relation operations using SQL. We start by
explaining the structure of SQL queries. Then we show how to use SQL to perform
common data manipulation tasks, like slicing, filtering, sorting, grouping, and
joining.

This chapter replicates the data analyses in Chapter 6 using rela‐
tions and SQL instead of dataframes and Python. The datasets, data
manipulations, and conclusions are nearly identical across the two
chapters for ease of comparison between performing data manipu‐
lations in pandas and SQL.

Subsetting
To work with relations, we’ll introduce a domain-specific programming language
called SQL (Structured Query Language). We commonly pronounce “SQL” like
“sequel” instead of spelling out the acronym. SQL is a specialized language for

115

working with relations—as such, SQL has a different syntax than Python for writing
programs that operate on relational data.

In this chapter, we’ll use SQL queries within Python programs. This illustrates a com‐
mon workflow—data scientists often process and subset data in SQL before loading
the data into Python for further analysis. SQL databases make it easier to work with
large amounts of data compared to pandas programs. However, loading data into pan
das makes it easier to visualize the data and build statistical models.

Why do SQL systems tend to work better with larger datasets? In
short, SQL systems have sophisticated algorithms for managing
data stored on disk. For example, when working with a large data‐
set, SQL systems will transparently load and manipulate small por‐
tions of data at a time; doing this in pandas can be quite difficult in
comparison. We cover this topic in more detail in Chapter 8.

SQL Basics: SELECT and FROM
We’ll use the pd.read_sql function, which runs a SQL query and stores the output in
a pandas dataframe. Using this function requires some setup. We start by importing
the pandas and sqlalchemy Python packages:

import pandas as pd
import sqlalchemy

Our database is stored in a file called babynames.db. This file is a SQLite database, so
we’ll set up a sqlalchemy object that can process this format:

db = sqlalchemy.create_engine('sqlite:///babynames.db')

In this book, we use SQLite, an extremely useful database system
for working with data stored locally. Other systems make different
trade-offs that are useful for different domains. For instance, Post‐
greSQL and MySQL are more complex systems that are useful for
large web applications where many end users are writing data at the
same time. Although each SQL system has slight differences, they
provide the same core SQL functionality. Readers may also be
aware that Python provides SQLite support in its standard sqlite3
library. We choose to use sqlalchemy because it’s easier to reuse the
code for other SQL systems beyond SQLite.

Now we can use pd.read_sql to run SQL queries on this database. This database has
two relations: baby and nyt. Here’s a simple example that reads in the entire baby
relation. We write a SQL query as a Python string and pass it into pd.read_sql:

116 | Chapter 7: Working with Relations Using SQL

https://oreil.ly/sGYWE

query = '''
SELECT *
FROM baby;
'''

pd.read_sql(query, db)

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
2020719 Verona F 5 1880
2020720 Vertie F 5 1880
2020721 Wilma F 5 1880

2020722 rows × 4 columns

The text inside the query variable contains SQL code. SELECT and FROM are SQL key‐
words. We read the preceding query like this:

SELECT * -- Get all the columns...
FROM baby; -- ...from the baby relation

The baby relation contains the same data as the baby dataframe in Chapter 6: the
names of all babies registered by the US Social Security Administration.

What’s a Relation?
Let’s examine the baby relation in more detail. A relation has rows and columns.
Every column has a label, as illustrated in Figure 7-1. Unlike dataframes, however,
individual rows in a relation don’t have labels. Also unlike dataframes, rows of a rela‐
tion aren’t ordered.

Figure 7-1. The baby relation has labels for columns (boxed)

Subsetting | 117

Relations have a long history. More formal treatments of relations use the term tuple
to refer to the rows of a relation, and attribute to refer to the columns. There is also a
rigorous way to define data operations using relational algebra, which is derived from
mathematical set algebra.

Slicing
Slicing is an operation that creates a new relation by taking a subset of rows or col‐
umns out of another relation. Think about slicing a tomato—slices can go both verti‐
cally and horizontally. To slice columns of a relation, we give the SELECT statement
the columns we want:

query = '''
SELECT Name
FROM baby;
'''

pd.read_sql(query, db)

 Name
0 Liam
1 Noah
2 Oliver
... ...
2020719 Verona
2020720 Vertie
2020721 Wilma

2020722 rows × 1 columns

query = '''
SELECT Name, Count
FROM baby;
'''

pd.read_sql(query, db)

 Name Count
0 Liam 19659
1 Noah 18252
2 Oliver 14147
...
2020719 Verona 5
2020720 Vertie 5
2020721 Wilma 5

118 | Chapter 7: Working with Relations Using SQL

2020722 rows × 2 columns

To slice out a specific number of rows, use the LIMIT keyword:

query = '''
SELECT Name
FROM baby
LIMIT 10;
'''

pd.read_sql(query, db)

 Name
0 Liam
1 Noah
2 Oliver
... ...
7 Lucas
8 Henry
9 Alexander

10 rows × 1 columns

In sum, we use the SELECT and LIMIT keywords to slice columns and rows of a
relation.

Filtering Rows
Now we turn to filtering rows—taking subsets of rows using one or more criteria. In
pandas, we slice dataframes using Boolean series objects. In SQL, we instead use the
WHERE keyword with a predicate. The following query filters the baby relation to have
only the baby names in 2020:

query = '''
SELECT *
FROM baby
WHERE Year = 2020;
'''

pd.read_sql(query, db)

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
31267 Zylynn F 5 2020

Subsetting | 119

 Name Sex Count Year
31268 Zynique F 5 2020
31269 Zynlee F 5 2020

31270 rows × 4 columns

Note that when comparing for equality, SQL uses a single equals
sign:

SELECT *
FROM baby
WHERE Year = 2020;
-- ↑
-- Single equals sign

In Python, however, single equals signs are used for variable assign‐
ment. The statement Year = 2020 will assign the value 2020 to the
variable Year. To compare for equality, Python code uses double
equals signs:

Assignment
my_year = 2021

Comparison, which evaluates to False
my_year == 2020

To add more predicates to the filter, use the AND and OR keywords. For instance, to
find the names that have more than 10,000 babies in either 2020 or 2019, we write:

query = '''
SELECT *
FROM baby
WHERE Count > 10000
 AND (Year = 2020
 OR Year = 2019);
-- Notice that we use parentheses to enforce evaluation order
'''

pd.read_sql(query, db)

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
41 Mia F 12452 2019

120 | Chapter 7: Working with Relations Using SQL

 Name Sex Count Year
42 Harper F 10464 2019
43 Evelyn F 10412 2019

44 rows × 4 columns

Finally, to find the 10 most common names in 2020, we can sort the dataframe by
Count in descending order using the ORDER BY keyword with the DESC option (short
for DESCending):

query = '''
SELECT *
FROM baby
WHERE Year = 2020
ORDER BY Count DESC
LIMIT 10;
'''

pd.read_sql(query, db)

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Emma F 15581 2020
...
7 Sophia F 12976 2020
8 Amelia F 12704 2020
9 William M 12541 2020

10 rows × 4 columns

We see that Liam, Noah, and Emma were the most popular baby names in 2020.

Example: How Recently Has Luna Become a Popular Name?
As we mentioned in Chapter 6, a New York Times article mentions that the name
Luna was almost nonexistent before 2000 but has since grown to become a very pop‐
ular name for girls. When exactly did Luna become popular? We can check this in
SQL using slicing and filtering:

query = '''
SELECT *
FROM baby
WHERE Name = "Luna"
 AND Sex = "F";
'''

Subsetting | 121

luna = pd.read_sql(query, db)
luna

 Name Sex Count Year
0 Luna F 7770 2020
1 Luna F 7772 2019
2 Luna F 6929 2018
...
125 Luna F 17 1883
126 Luna F 18 1881
127 Luna F 15 1880

128 rows × 4 columns

pd.read_sql returns a pandas.DataFrame object, which we can use to make a plot.
This illustrates a common workflow—process the data using SQL, load it into a pan
das dataframe, then visualize the results:

px.line(luna, x='Year', y='Count', width=350, height=250)

In this section, we introduced the common ways that data scientists subset relations—
slicing with column labels and filtering using a boolean condition. In the next sec‐
tion, we explain how to aggregate rows together.

Aggregating
This section introduces grouping and aggregating in SQL. We’ll work with the baby
names data, as in the previous section:

import sqlalchemy
db = sqlalchemy.create_engine('sqlite:///babynames.db')

122 | Chapter 7: Working with Relations Using SQL

query = '''
SELECT *
FROM baby
LIMIT 10
'''

pd.read_sql(query, db)

 Name Sex Count Year
0 Liam M 19659 2020
1 Noah M 18252 2020
2 Oliver M 14147 2020
...
7 Lucas M 11281 2020
8 Henry M 10705 2020
9 Alexander M 10151 2020

10 rows × 4 columns

Basic Group-Aggregate Using GROUP BY
Let’s say we want to find out the total number of babies born as recorded in this data.
This is simply the sum of the Count column. SQL provides functions that we use in
the SELECT statement, like SUM:

query = '''
SELECT SUM(Count)
FROM baby
'''

pd.read_sql(query, db)

 SUM(Count)
0 352554503

In Chapter 6, we used grouping and aggregation to figure out whether US births are
trending upward over time. We grouped the dataset by year using .groupby(), then
summed the counts within each group using .sum().

In SQL, we instead group using the GROUP BY clause, then call aggregation functions
in SELECT:

query = '''
SELECT Year, SUM(Count)
FROM baby
GROUP BY Year
'''

Aggregating | 123

pd.read_sql(query, db)

 Year SUM(Count)
0 1880 194419
1 1881 185772
2 1882 213385
...
138 2018 3487193
139 2019 3437438
140 2020 3287724

141 rows × 2 columns

As with dataframe grouping, notice that the Year column contains the unique Year
values—there are no duplicate Year values anymore since we grouped them together.
When grouping in pandas, the grouping columns become the index of the resulting
dataframe. However, relations don’t have row labels, so the Year values are just a col‐
umn in the resulting relation.

Here’s the basic recipe for grouping in SQL:

SELECT
 col1, -- column used for grouping
 SUM(col2) -- aggregation of another column
FROM table_name -- relation to use
GROUP BY col1 -- the column(s) to group by

Note that the order of clauses in a SQL statement is important. To avoid a syntax
error, SELECT needs to appear first, then FROM, then WHERE, then GROUP BY.

When using GROUP BY we need to be careful about the columns given to SELECT. In
general, we can only include columns without an aggregation when we use those col‐
umns to group. For instance, in the preceding example we grouped by the Year col‐
umn, so we can include Year in the SELECT clause. All other columns included in
SELECT should be aggregated, as we did earlier with SUM(Count). If we included a
“bare” column like Name that wasn’t used for grouping, it’s ambiguous which name
within the group should be returned. Although bare columns won’t cause an error for
SQLite, they cause other SQL engines to error, so we recommend avoiding them.

Grouping on Multiple Columns
We pass multiple columns into GROUP BY to group by multiple columns at once. This
is useful when we need to further subdivide our groups. For example, we can group
by both year and sex to see how many male and female babies were born over time:

124 | Chapter 7: Working with Relations Using SQL

query = '''
SELECT Year, Sex, SUM(Count)
FROM baby
GROUP BY Year, Sex
'''

pd.read_sql(query, db)

 Year Sex SUM(Count)
0 1880 F 83929
1 1880 M 110490
2 1881 F 85034
...
279 2019 M 1785527
280 2020 F 1581301
281 2020 M 1706423

282 rows × 3 columns

Notice that the preceding code is very similar to grouping by a single column, except
that it gives multiple columns to GROUP BY to group by both Year and Sex.

Unlike pandas, SQLite doesn’t provide a simple way to pivot a rela‐
tion. Instead, we can use GROUP BY on two columns in SQL, read
the result into a dataframe, and then use the unstack() dataframe
method.

Other Aggregation Functions
SQLite has several other built-in aggregation functions besides SUM, such as COUNT,
AVG, MIN, and MAX. For the full list of functions, consult the SQLite website.

To use another aggregation function, we call it in the SELECT clause. For instance, we
can use MAX instead of SUM:

query = '''
SELECT Year, MAX(Count)
FROM baby
GROUP BY Year
'''

pd.read_sql(query, db)

Aggregating | 125

https://oreil.ly/ALtjb

 Year MAX(Count)
0 1880 9655
1 1881 8769
2 1882 9557
...
138 2018 19924
139 2019 20555
140 2020 19659

141 rows × 2 columns

The built-in aggregation functions are one of the first places a data
scientist may encounter differences in SQL implementations. For
instance, SQLite has a relatively minimal set of aggregation func‐
tions while PostgreSQL has many more. That said, almost all SQL
implementations provide SUM, COUNT, MIN, MAX, and AVG.

This section covered common ways to aggregate data in SQL using the GROUP BY key‐
word with one or more columns. In the next section, we’ll explain how to join rela‐
tions together.

Joining
To connect records between two data tables, SQL relations can be joined together
similar to dataframes. In this section, we introduce SQL joins to replicate our analysis
of the baby names data. Recall that Chapter 6 mentions a New York Times article that
talks about how certain name categories, like mythological and baby boomer names,
have become more or less popular over time.

We’ve taken the names and categories in the NYT article and put them in a small rela‐
tion named nyt. First, the code sets up a connection to a database, then runs a SQL
query to display the nyt relation:

import sqlalchemy
db = sqlalchemy.create_engine('sqlite:///babynames.db')

query = '''
SELECT *
FROM nyt;
'''

pd.read_sql(query, db)

 nyt_name category
0 Lucifer forbidden

126 | Chapter 7: Working with Relations Using SQL

https://oreil.ly/gqYoK

 nyt_name category
1 Lilith forbidden
2 Danger forbidden
...
20 Venus celestial
21 Celestia celestial
22 Skye celestial

23 rows × 2 columns

Notice that the preceding code runs a query on babynames.db, the
same database that contains the larger baby relation from the previ‐
ous sections. SQL databases can hold more than one relation, mak‐
ing them very useful when we need to work with many data tables
at once. CSV files, on the other hand, typically contain one data
table each—if we perform a data analysis that uses 20 data tables,
we might need to keep track of the names, locations, and versions
of 20 CSV files. Instead, it could be simpler to store all the data
tables in a SQLite database stored in a single file.

To see how popular the categories of names are, we join the nyt relation with the
baby relation to get the name counts from baby.

Inner Joins
As in Chapter 6, we’ve made smaller versions of the baby and nyt tables so that it’s
easier to see what happens when we join tables together. The relations are called
baby_small and nyt_small:

query = '''
SELECT *
FROM baby_small;
'''

pd.read_sql(query, db)

 Name Sex Count Year
0 Noah M 18252 2020
1 Julius M 960 2020
2 Karen M 6 2020
3 Karen F 325 2020
4 Noah F 305 2020

query = '''
SELECT *

Joining | 127

FROM nyt_small;
'''

pd.read_sql(query, db)

 nyt_name category
0 Karen boomer
1 Julius mythology
2 Freya mythology

To join relations in SQL, we use the INNER JOIN clause to say which tables we want to
join and the ON clause to specify a predicate for joining the tables. Here’s an example:

query = '''
SELECT *
FROM baby_small INNER JOIN nyt_small
 ON baby_small.Name = nyt_small.nyt_name
'''

pd.read_sql(query, db)

 Name Sex Count Year nyt_name category
0 Julius M 960 2020 Julius mythology
1 Karen M 6 2020 Karen boomer
2 Karen F 325 2020 Karen boomer

Notice that this result is the same as doing an inner join in pandas: the new table has
the columns of both the baby_small and nyt_small tables. The rows with the name
Noah are gone, and the remaining rows have their matching category from
nyt_small.

To join two tables together, we tell SQL the column(s) from each table that we want to
do the join with, using a predicate with the ON keyword. SQL matches rows together
when the values in the joining columns fulfill the predicate, as shown in Figure 7-2.

Unlike pandas, SQL gives more flexibility on how rows are joined. The pd.merge()
method can only join using simple equality, but the predicate in the ON clause can be
arbitrarily complex. As an example, we take advantage of this extra versatility in
“Finding Collocated Sensors” on page 284.

128 | Chapter 7: Working with Relations Using SQL

Figure 7-2. Joining two tables together with SQL

Left and Right Joins
Like pandas, SQL also supports left joins. Instead of saying INNER JOIN, we use LEFT
JOIN:

query = '''
SELECT *
FROM baby_small LEFT JOIN nyt_small
 ON baby_small.Name = nyt_small.nyt_name
'''

pd.read_sql(query, db)

 Name Sex Count Year nyt_name category
0 Noah M 18252 2020 None None
1 Julius M 960 2020 Julius mythology
2 Karen M 6 2020 Karen boomer
3 Karen F 325 2020 Karen boomer
4 Noah F 305 2020 None None

As we might expect, the “left” side of the join refers to the table that appears on the
left side of the LEFT JOIN keyword. We can see the Noah rows are kept in the resulting
relation even when they don’t have a match in the righthand relation.

Note that SQLite doesn’t support right joins directly, but we can perform the same
join by swapping the order of relations, then using LEFT JOIN:

query = '''
SELECT *
FROM nyt_small LEFT JOIN baby_small
 ON baby_small.Name = nyt_small.nyt_name
'''

pd.read_sql(query, db)

Joining | 129

 nyt_name category Name Sex Count Year
0 Karen boomer Karen F 325.0 2020.0
1 Karen boomer Karen M 6.0 2020.0
2 Julius mythology Julius M 960.0 2020.0
3 Freya mythology None None NaN NaN

SQLite doesn’t have a built-in keyword for outer joins. In cases where an outer join is
needed, we have to either use a different SQL engine or perform an outer join via
pandas. However, in our (the authors’) experience, outer joins are rarely used in prac‐
tice compared to inner and left joins.

Example: Popularity of NYT Name Categories
Now let’s return to the full baby and nyt relations.

We want to know how the popularity of name categories in nyt has changed over
time. To answer this question, we should:

1. Inner join baby with nyt, matching rows where the names are equal.
2. Group the table by category and Year.
3. Aggregate the counts using a sum:

query = '''
SELECT
 category,
 Year,
 SUM(Count) AS count -- [3]
FROM baby INNER JOIN nyt -- [1]
 ON baby.Name = nyt.nyt_name -- [1]
GROUP BY category, Year -- [2]
'''

cate_counts = pd.read_sql(query, db)
cate_counts

 category Year count
0 boomer 1880 292
1 boomer 1881 298
2 boomer 1882 326
...
647 mythology 2018 2944
648 mythology 2019 3320
649 mythology 2020 3489

650 rows × 3 columns

130 | Chapter 7: Working with Relations Using SQL

The numbers in square brackets ([1], [2], [3]) in the preceding query show how
each step in our plan maps to the parts of the SQL query. The code re-creates the
dataframe from Chapter 6, where we created plots to verify the claims of the New
York Times article. For brevity, we omit duplicating the plots here.

Notice that in the SQL code in this example, the numbers appear
out of order—[3], [1], then [2]. As a rule of thumb for first-time
SQL learners, we can often think of the SELECT statement as the last
piece of the query to execute even though it appears first.

In this section, we introduced joins for relations. When joining relations together, we
match rows using the INNER JOIN or LEFT JOIN keyword and a boolean predicate. In
the next section, we’ll explain how to transform values in a relation.

Transforming and Common Table Expressions
In this section, we show how to call functions to transform columns of data using
built-in SQL functions. We also demonstrate how to use common table expressions
to build up complex queries from simpler ones. As usual, we start by loading the
database:

Set up connection to database
import sqlalchemy
db = sqlalchemy.create_engine('sqlite:///babynames.db')

SQL Functions
SQLite provides a variety of scalar functions, or functions that transform single data
values. When called on a column of data, SQLite will apply these functions on each
value in the column. In contrast, aggregation functions like SUM and COUNT take a col‐
umn of values as input and compute a single value as output.

SQLite provides a comprehensive list of the built-in scalar functions in its online doc‐
umentation. For instance, to find the number of characters in each name, we use the
LENGTH function:

query = '''
SELECT Name, LENGTH(Name)
FROM baby
LIMIT 10;
'''

pd.read_sql(query, db)

Transforming and Common Table Expressions | 131

https://oreil.ly/kznBO
https://oreil.ly/kznBO

 Name LENGTH(Name)
0 Liam 4
1 Noah 4
2 Oliver 6
...
7 Lucas 5
8 Henry 5
9 Alexander 9

10 rows × 2 columns

Notice that the LENGTH function is applied to each value within the Name column.

Like aggregation functions, each implementation of SQL provides a
different set of scalar functions. SQLite has a relatively minimal set
of functions, while PostgreSQL has many more. That said, almost
all SQL implementations provide some equivalent to SQLite’s
LENGTH, ROUND, SUBSTR, and LIKE functions.

Although scalar functions use the same syntax as an aggregation function, they
behave differently. This can result in confusing output if the two are mixed together
in a single query:

query = '''
SELECT Name, LENGTH(Name), AVG(Count)
FROM baby
LIMIT 10;
'''

pd.read_sql(query, db)

 Name LENGTH(Name) AVG(Count)
0 Liam 4 174.47

Here, the AVG(Name) computes the average of the entire Count column, but the output
is confusing—a reader could easily think the average is related to the name Liam. For
this reason, we must be careful when scalar and aggregation functions appear
together within a SELECT statement.

To extract the first letter of each name, we can use the SUBSTR function (short for
substring). As described in the documentation, the SUBSTR function takes three argu‐
ments. The first is the input string, the second is the position to begin the substring
(1-indexed), and the third is the length of the substring:

query = '''
SELECT Name, SUBSTR(Name, 1, 1)

132 | Chapter 7: Working with Relations Using SQL

https://oreil.ly/i2KIA

FROM baby
LIMIT 10;
'''

pd.read_sql(query, db)

 Name SUBSTR(Name, 1, 1)
0 Liam L
1 Noah N
2 Oliver O
...
7 Lucas L
8 Henry H
9 Alexander A

10 rows × 2 columns

We can use the AS keyword to rename the column:

query = '''
SELECT *, SUBSTR(Name, 1, 1) AS Firsts
FROM baby
LIMIT 10;
'''

pd.read_sql(query, db)

 Name Sex Count Year Firsts
0 Liam M 19659 2020 L
1 Noah M 18252 2020 N
2 Oliver M 14147 2020 O
...
7 Lucas M 11281 2020 L
8 Henry M 10705 2020 H
9 Alexander M 10151 2020 A

10 rows × 5 columns

After calculating the first letter of each name, our analysis aims to understand the
popularity of first letters over time. To do this, we want to take the output of this SQL
query and use it as a single step within a longer chain of operations.

SQL provides several options to break queries into smaller steps, which is helpful in
more complex analyses like this one. The most common options for doing this are to
create a new relation using a CREATE TABLE statement, create a new view using
CREATE VIEW, or create a temporary relation using WITH. Each of these methods has

Transforming and Common Table Expressions | 133

different use-cases. For simplicity, we only describe the WITH statement in this section
and suggest that readers look over the SQLite documentation for details.

Multistep Queries Using a WITH Clause
The WITH clause lets us assign a name to any SELECT query. Then we can treat that
query as though it exists as a relation in the database just for the duration of the
query. SQLite calls these temporary relations common table expressions. For instance,
we can take the earlier query that calculates the first letter of each name and call it
letters:

query = '''
-- Create a temporary relation called letters by calculating
-- the first letter for each name in baby
WITH letters AS (
 SELECT *, SUBSTR(Name, 1, 1) AS Firsts
 FROM baby
)
-- Then, select the first ten rows from letters
SELECT *
FROM letters
LIMIT 10;
'''

pd.read_sql(query, db)

 Name Sex Count Year Firsts
0 Liam M 19659 2020 L
1 Noah M 18252 2020 N
2 Oliver M 14147 2020 O
...
7 Lucas M 11281 2020 L
8 Henry M 10705 2020 H
9 Alexander M 10151 2020 A

10 rows × 5 columns

WITH statements are very useful since they can be chained together. We can create
multiple temporary relations in a WITH statement that each perform a bit of work on
the previous result, which lets us gradually build complicated queries a step at a time.

Example: Popularity of “L” Names
We can use WITH statements to look at the popularity of names that start with the let‐
ter L over time. We’ll group the temporary letters relation by the first letter and

134 | Chapter 7: Working with Relations Using SQL

year, then aggregate the Count column using a sum, then filter to get only names with
the letter L:

query = '''
WITH letters AS (
 SELECT *, SUBSTR(Name, 1, 1) AS Firsts
 FROM baby
)
SELECT Firsts, Year, SUM(Count) AS Count
FROM letters
WHERE Firsts = "L"
GROUP BY Firsts, Year;
'''

letter_counts = pd.read_sql(query, db)
letter_counts

 Firsts Year Count
0 L 1880 12799
1 L 1881 12770
2 L 1882 14923
...
138 L 2018 246251
139 L 2019 249315
140 L 2020 239760

141 rows × 3 columns

This relation contains the same data as the one from Chapter 6. In that chapter, we
make a plot of the Count column over time, which we omit here for brevity.

In this section, we introduced data transformations. To transform values in a relation,
we commonly use SQL functions like LENGTH() or SUBSTR(). We also explained how
to build up complex queries using the WITH clause.

Summary
In this chapter, we explained what relations are, why they’re useful, and how to work
with them using SQL code. SQL databases are useful for many real-world settings.
For example, SQL databases typically have robust data recovery mechanisms—if the
computer crashes while in the middle of a SQL operation, the database system can
recover as much data as possible without corruption. As mentioned earlier, SQL data‐
bases can also handle larger scale; organizations use SQL databases to store and query
databases that are far too large to analyze in memory using pandas code. These are
just a few reasons why SQL is an important part of the data science toolbox, and we
expect that many readers will soon encounter SQL code as part of their work.

Summary | 135

PART III

Understanding The Data

CHAPTER 8

Wrangling Files

Before you can work with data in Python, it helps to understand the files that store
the source of the data. You want answers to a couple of basic questions:

• How much data do you have?
• How is the source file formatted?

Answers to these questions can be very helpful. For example, if your file is too large
or is not formatted the way you expect, you might not be able to properly load it into
a dataframe.

Although many types of structures can represent data, in this book we primarily work
with data tables, such as Pandas DataFrames and SQL relations. (But do note that
Chapter 13 examines less-structured text data, and Chapter 14 introduces hierarchi‐
cal formats and binary files.) We focus on data tables for several reasons. Research on
how to store and manipulate data tables has resulted in stable and efficient tools for
working with tables. Plus, data in a tabular format are close cousins of matrices, the
mathematical objects of the immensely rich field of linear algebra. And of course,
data tables are quite common.

In this chapter, we introduce typical file formats and encodings for plain text,
describe measures of file size, and use Python tools to examine source files. Later in
the chapter, we introduce an alternative approach for working with files: the shell
interpreter. Shell commands give us a programmatic way to get information about a
file outside the Python environment, and the shell can be very useful with big data.
Finally, we check the data table’s shape (the number of rows and columns) and granu‐
larity (what a row represents). These simple checks are the starting point for cleaning
and analyzing our data.

139

We first provide brief descriptions of the datasets that we use as examples throughout
this chapter.

Data Source Examples
We have selected two examples to demonstrate file wrangling concepts: a government
survey about drug abuse, and administrative data from the San Francisco Depart‐
ment of Public Health about restaurant inspections. Before we start wrangling, we
give an overview of the data scope for these examples (see Chapter 2).

Drug Abuse Warning Network (DAWN) Survey
DAWN is a national health-care survey that monitors trends in drug abuse. The sur‐
vey aims to estimate the impact of drug abuse on the country’s health-care system
and improve how emergency departments monitor substance abuse crises. DAWN
was administered annually from 1998 through 2011 by the Substance Abuse and
Mental Health Services Administration (SAMHSA). In 2018, due in part to the opioid
epidemic, the DAWN survey was restarted. In this example, we look at the 2011 data,
which have been made available through the SAMHSA Data Archive.

The target population consists of all drug-related emergency room visits in the US.
These visits are accessed through a frame of emergency rooms in hospitals (and their
records). Hospitals are selected for the survey through probability sampling (see
Chapter 3), and all drug-related visits to the sampled hospital’s emergency room are
included in the survey. All types of drug-related visits are included, such as drug mis‐
use, abuse, accidental ingestion, suicide attempts, malicious poisonings, and adverse
reactions. For each visit, the record may contain up to 16 different drugs, including
illegal drugs, prescription drugs, and over-the-counter medications.

The source file for this dataset is an example of fixed-width formatting that requires
external documentation, like a codebook, to decipher. Also, it is a reasonably large file
and so motivates the topic of how to find a file’s size. And the granularity is unusual
because an ER visit, not a person, is the subject of investigation.

The San Francisco restaurant files have other characteristics that make them a good
example for this chapter.

San Francisco Restaurant Food Safety
The San Francisco Department of Public Health routinely makes unannounced visits
to restaurants and inspects them for food safety. The inspector calculates a score
based on the violations found and provides descriptions of the violations. The target
population here is all restaurants in San Francisco. These restaurants are accessed
through a frame of restaurant inspections that were conducted between 2013 and

140 | Chapter 8: Wrangling Files

https://www.samhsa.gov
https://www.samhsa.gov
https://oreil.ly/Y2SKG
https://oreil.ly/kG1PN

1 In 2020, the city began giving restaurants color-coded placards indicating whether the restaurant passed
(green), conditionally passed (yellow), or failed (red) the inspection. These new placards no longer display a
numeric inspection score. However, a restaurant’s scores and violations are still available at DataSF.

2016. Some restaurants have multiple inspections in a year, and not all of the 7,000+
restaurants are inspected annually.

Food safety scores are available through the city’s Open Data initiative, called DataSF.
DataSF is one example a city government making their data publicly available; the
DataSF mission is to “empower the use of data in decision making and service deliv‐
ery” with the goal of improving the quality of life and work for residents, employers,
employees, and visitors.

San Francisco requires restaurants to publicly display their scores (see Figure 8-1 for
an example placard).1 These data offer an example of multiple files with different
structures, fields, and granularity. One dataset contains summary results of inspec‐
tions, another provides details about the violations found, and a third contains gen‐
eral information about the restaurants. The violations include both serious problems
related to the transmission of foodborne illnesses and minor issues such as not prop‐
erly displaying the inspection placard.

Figure 8-1. A food safety scorecard displayed in a restaurant; scores range between 0 and
100

Data Source Examples | 141

https://oreil.ly/kwh-F
https://datasf.org

Both the DAWN survey data and the San Francisco restaurant inspection data are
available online as plain-text files. However, their formats are quite different, and in
the next section, we demonstrate how to figure out a file format so that we can read
the data into a dataframe.

File Formats
A file format describes how data are stored on a computer’s disk or other storage
device. Understanding the file format helps us figure out how to read the data into
Python in order to work with it as a data table. In this section, we introduce several
popular formats used to store data tables. These are all plain-text formats, meaning
they are easy for us to read with a text editor like VS Code, Sublime, Vim, or Emacs.

The file format and the structure of the data are two different
things. We consider the data structure to be a mental representa‐
tion of the data that tells us what kinds of operations we can do. For
example, a table structure corresponds to data values arranged in
rows and columns. But the same table can be stored in many differ‐
ent types of file formats.

The first format we describe is the delimited file format.

Delimited Format
Delimited formats use a specific character to separate data values. Usually, these sepa‐
rators are either a comma (comma-separated values, or CSV for short), a tab (tab-
separated values, or TSV), whitespace, or a colon. These formats are natural for
storing data that have a table structure. Each line in the file represents a record, which
is delimited by newline (\n or \r\n) characters. And within a line, the record’s infor‐
mation is delimited by the comma character (,) for CSV or the tab character (\t) for
TSV, and so on. The first line of these files often contains the names of the table’s
columns/features.

The San Francisco restaurant scores are stored in CSV-formatted files. Let’s display
the first few lines of the inspections.csv file. In Python, the built-in pathlib library has
a useful Path object to specify paths to files and folders that work across platforms.
This file is within the data folder, so we use Path() to create the full pathname:

from pathlib import Path

Create a Path pointing to our datafile
insp_path = Path() / 'data' / 'inspections.csv'

142 | Chapter 8: Wrangling Files

Paths are tricky when working across different operating systems
(OSs). For instance, a typical path in Windows might look like C:
\files\data.csv, while a path in Unix or macOS might look like ~/
files/data.csv. Because of this, code that works on one OS can fail to
run on other OSs.
The pathlib Python library was created to avoid OS-specific path
issues. By using it, the code shown here is more portable—it works
across Windows, macOS, and Unix.

The Path object in the following code has many useful methods, such as
read_text(), which reads in the entire contents of the file as a string:

text = insp_path.read_text()
Print first five lines
print('\n'.join(text.split('\n')[:5]))

"business_id","score","date","type"
19,"94","20160513","routine"
19,"94","20171211","routine"
24,"98","20171101","routine"
24,"98","20161005","routine"

Notice that the field names appear in the first line of the file; these names are comma
separated and in quotes. We see four fields: the business identifier, the restaurant’s
score, the date of the inspection, and the type of inspection. Each line in the file cor‐
responds to one inspection, and the ID, score, date, and type values are separated by
commas. In addition to identifying the file format, we also want to identify the format
of the features. We see two things of note: the scores and dates both appear as strings.
We will want to convert the scores to numbers so that we can calculate summary sta‐
tistics and create visualizations. And we will convert the date into a date-time format
so that we can make time-series plots. We show how to carry out these transforma‐
tions in Chapter 9.

Displaying the first few lines of a file is something we’ll do often, so we create a func‐
tion as a shortcut:

def head(filepath, n=5, width=-1):
 '''Prints the width characters of first n lines of filepath'''
 with filepath.open() as f:
 for _ in range(n):
 (print(f.readline(), end='') if width < 0
 else print(f.readline()[:width]))

File Formats | 143

People often confuse CSV and TSV files with spreadsheets. This is
in part because most spreadsheet software (like Microsoft Excel)
will automatically display a CSV file as a table in a workbook.
Behind the scenes, Excel looks at the file format and encoding just
like we’ve done in this section. However, Excel files have a different
format than CSV and TSV files, and we need to use different pan
das functions to read these formats into Python.

All three of the restaurant source files are CSV formatted. In contrast, the DAWN
source file has a fixed-width format. We describe this kind of formatting next.

Fixed-Width Format
The fixed-width format (FWF) does not use delimiters to separate data values.
Instead, the values for a specific field appear in the exact same position in each line.
The DAWN source file has this format. Each line in the file is very long. For display
purposes, we only show the first few characters from the first five lines in the file:

dawn_path = Path() / 'data' / 'DAWN-Data.txt'
head(dawn_path, width=65)

 1 2251082 .9426354082 3 4 1 2201141 2 865 105 1102005 1
 2 2291292 5.9920106887 911 1 3201134 12077 81 82 283-8
 3 7 7 251 4.7231718669 611 2 2201143 12313 1 12 -7-8
 410 8 292 4.0801470012 6 2 1 3201122 1 234 358 99 215 2
 5 122 942 5.1777093467 10 6 1 3201134 3 865 105 1102005 1

Notice how the values appear to align from one row to the next. For example, there is
a decimal point in the same position (the 19th character) in each line. Notice also that
some of the values seem to be squished together, and we need to know the exact posi‐
tion of each piece of information in a line in order to make sense of it. SAMHSA pro‐
vides a 2,000-page codebook with all of this information, including some basic
checks, so that we can confirm that we have correctly read the file. For instance, the
codebook tells us that the age field appears in positions 34–35 and is coded in inter‐
vals from 1 to 11. The first two records shown in the preceding code have age cate‐
gories of 4 and 11; the codebook tells us that a 4 stands for the age bracket “6 to 11”
and 11 is for “65+.”

Other plain-text formats that are popular include hierarchical formats and loosely
formatted text (in contrast to formats that directly support table structures). These
are covered in greater detail in other chapters, but for completeness, we briefly
describe them here.

144 | Chapter 8: Wrangling Files

https://oreil.ly/a4OFo

A widely adopted convention is to use the filename extension, such
as .csv, .tsv, and .txt, to indicate the format of the contents of the
file. Filenames that end with .csv are expected to contain comma-
separated values, and those ending with .tsv are expected to contain
tab-separated values; .txt generally denotes plain text without a
designated format. However, these extension names are only sug‐
gestions. Even if a file has a .csv extension, the actual contents
might not be formatted properly! It’s a good practice to inspect the
contents of the file before loading it into a dataframe. If the file is
not too large, you can open and examine it with a plain-text editor.
Otherwise, you can view a couple of lines using .readline() or
shell command.

Hierarchical Formats
Hierarchical formats store data in a nested form. For instance, JavaScript Object
Notation (JSON), which is commonly used for communication by web servers,
includes key-value pairs and arrays that can be nested, similar to a Python dictionary.
XML and HTML are other common formats for storing documents on the internet.
Like JSON, these files have a hierarchical, key-value format. We cover both formats
(JSON and XML) in more detail in Chapter 14.

Next, we briefly describe other plain-text files that don’t fall into any of the previous
categories but still have some structure to them that enables us to read and extract
information.

Loosely Formatted Text
Web logs, instrument readings, and program logs typically provide data in plain text.
For example, here is one line of a web log (we’ve split it across multiple lines for read‐
ability). It contains information such as the date, time, and type of request made to a
website:

169.237.46.168 - -
[26/Jan/2004:10:47:58 -0800]"GET /stat141/Winter04 HTTP/1.1" 301 328
"http://anson.ucdavis.edu/courses"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"

There are organizational patterns present, but not in a simple delimited format. This
is what we mean by “loosely formatted.” We see that the date and time appear
between square brackets, and the type of request (GET in this case) follows the date-
time information and appears in quotes. In Chapter 13, we use these observations
about the web log’s format and string manipulation tools to extract values of interest
into a data table.

As another example, here is a single record taken from a wireless device log. The
device reports the timestamp, the identifier, its location, and the signal strengths that

File Formats | 145

it picks up from other devices. This information uses a combination of formats: key-
value pairs, semicolon-delimited values, and comma-delimited values:

t=1139644637174;id=00:02:2D:21:0F:33;pos=2.0,0.0,0.0;degree=45.5;
00:14:bf:b1:97:8a=-33,2437000000,3;00:14:bf:b1:97:8a=-38,2437000000,3;

Like with the web logs, we can use string manipulation and the patterns in the
records to extract features into a table.

We have primarily introduced formats for plain-text data that are widely used for
storing and exchanging tables. The CSV format is the most common, but others, such
as tab-separated and fixed-width formats, are also prevalent. And there are many
types of file formats that store data!

So far, we have used the term plain text to broadly cover formats that can be viewed
with a text editor. However, a plain-text file may have different encodings, and if we
don’t specify the encoding correctly, the values in the dataframe might contain gib‐
berish. We give an overview of file encoding next.

File Encoding
Computers store data as sequences of bits: 0s and 1s. Character encodings, like ASCII,
tell the computer how to translate between bits and text. For example, in ASCII, the
bits 100 001 stand for the letter A and 100 010 for B. The most basic kind of plain
text supports only standard ASCII characters, which includes the uppercase and low‐
ercase English letters, numbers, punctuation symbols, and spaces.

ASCII encoding does not include a lot of special characters or characters from other
languages. Other, more modern character encodings have many more characters that
can be represented. Common encodings for documents and web pages are Latin-1
(ISO-8859-1) and UTF-8. UTF-8 has over a million characters and is backward com‐
patible with ASCII, meaning that it uses the same representation for English letters,
numbers, and punctuation as ASCII.

When we have a text file, we usually need to figure out its encoding. If we choose the
wrong encoding to read in a file, Python either reads incorrect values or throws an
error. The best way to find the encoding is by checking the data’s documentation,
which often explicitly says what the encoding is.

When we don’t know the encoding, we have to make a guess. The chardet package
has a function called detect() that infers a file’s encoding. Since these guesses are
imperfect, the function also returns a confidence level between 0 and 1. We use this
function to look at the files from our examples:

import chardet

line = '{:<25} {:<10} {}'.format

146 | Chapter 8: Wrangling Files

for each file, print its name, encoding & confidence in the encoding
print(line('File Name', 'Encoding', 'Confidence'))

for filepath in Path('data').glob('*'):
 result = chardet.detect(filepath.read_bytes())
 print(line(str(filepath), result['encoding'], result['confidence']))

File Name Encoding Confidence
data/inspections.csv ascii 1.0
data/co2_mm_mlo.txt ascii 1.0
data/violations.csv ascii 1.0
data/DAWN-Data.txt ascii 1.0
data/legend.csv ascii 1.0
data/businesses.csv ISO-8859-1 0.73

The detection function is quite certain that all but one of the files are ASCII encoded.
The exception is businesses.csv, which appears to have an ISO-8859-1 encoding. We
run into trouble if we ignore this encoding and try to read the businesses file into
pandas without specifying the special encoding:

naively reads file without considering encoding
>>> pd.read_csv('data/businesses.csv')
[...stack trace omitted...]
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd1 in
position 8: invalid continuation byte

To successfully read the data, we must specify the ISO-8859-1 encoding:

bus = pd.read_csv('data/businesses.csv', encoding='ISO-8859-1')

 business_id name address postal_code
0 19 NRGIZE LIFESTYLE CAFE 1200 VAN NESS AVE, 3RD FLOOR 94109
1 24 OMNI S.F. HOTEL - 2ND FLOOR PANTRY 500 CALIFORNIA ST, 2ND FLOOR 94104
2 31 NORMAN’S ICE CREAM AND FREEZES 2801 LEAVENWORTH ST 94133
3 45 CHARLIE’S DELI CAFE 3202 FOLSOM ST 94110

File encoding can be a bit mysterious to figure out, and unless there is metadata that
explicitly gives us the encoding, guesswork comes into play. When an encoding is not
100% confirmed, it’s a good idea to seek additional documentation.

Another potentially important aspect of a source file is its size. If a file is huge, then
we might not be able to read it into a dataframe. In the next section, we discuss how
to figure out a source file’s size.

File Encoding | 147

File Size
Computers have finite resources. You have likely encountered these limits firsthand if
your computer has slowed down from having too many applications open at once.
We want to make sure that we do not exceed the computer’s limits while working
with data, and we might choose to examine a file differently depending on its size. If
we know that our dataset is relatively small, then a text editor or a spreadsheet can be
convenient for looking at the data. On the other hand, for large datasets, a more pro‐
grammatic exploration or even distributed computing tools may be needed.

In many situations, we analyze datasets downloaded from the internet. These files
reside on the computer’s disk storage. In order to use Python to explore and manipu‐
late the data, we need to read the data into the computer’s memory, also known as
random access memory (RAM). All Python code requires the use of RAM, no matter
how short the code is. A computer’s RAM is typically much smaller than its disk stor‐
age. For example, one computer model released in 2018 had 32 times more disk stor‐
age than RAM. Unfortunately, this means that datafiles can often be much bigger
than what is feasible to read into memory.

Both disk storage and RAM capacity are measured in terms of bytes (eight 0s and 1s).
Roughly speaking, each character in a text file adds one byte to a file’s size. To
succinctly describe the sizes of larger files, we use the prefixes described in Table 8-1;
for example, a file that contains 52,428,800 characters will take up
5, 242, 8800/1, 0242 = 50 mebibytes, or 50 MiB on disk.

Table 8-1. Prefixes for common file sizes

Multiple Notation Number of bytes
Kibibyte KiB 1,024

Mebibyte MiB 1,024²

Gibibyte GiB 1,024³

Tebibyte TiB 1,024⁴

Pebibyte PiB 1,024⁵

Why use multiples of 1,024 instead of simple multiples of 1,000 for
these prefixes? This is a historical result of the fact that most com‐
puters use a binary number scheme where powers of 2 are simpler
to represent (1, 024 = 210). You also see the typical SI prefixes used
to describe size—kilobytes, megabytes, and gigabytes, for example.
Unfortunately, these prefixes are used inconsistently. Sometimes a
kilobyte refers to 1,000 bytes; other times, a kilobyte refers to 1,024
bytes. To avoid confusion, we stick to kibi-, mebi-, and gibibytes,
which clearly represent multiples of 1,024.

148 | Chapter 8: Wrangling Files

It is not uncommon to have a datafile happily stored on a computer that will overflow
the computer’s memory if we attempt to manipulate it with a program. So we often
begin our data work by making sure the files are of manageable size. To do this, we
use the built-in os library:

from pathlib import Path
import os

kib = 1024
line = '{:<25} {}'.format

print(line('File', 'Size (KiB)'))
for filepath in Path('data').glob('*'):
 size = os.path.getsize(filepath)
 print(line(str(filepath), np.round(size / kib)))

File Size (KiB)
data/inspections.csv 455.0
data/co2_mm_mlo.txt 50.0
data/violations.csv 3639.0
data/DAWN-Data.txt 273531.0
data/legend.csv 0.0
data/businesses.csv 645.0

We see that the businesses.csv file takes up 645 KiB on disk, making it well within the
memory capacities of most systems. Although the violations.csv file takes up 3.6 MiB
of disk storage, most machines can easily read it into a pandas DataFrame too. But
DAWN-Data.txt, which contains the DAWN survey data, is much larger.

The DAWN file takes up roughly 270 MiB of disk storage, and while some computers
can work with this file in memory, it can slow down other systems. To make this data
more manageable in Python, we can, for example, load in a subset of the columns
rather than all of them.

Sometimes we are interested in the total size of a folder instead of the size of individ‐
ual files. For example, we have three restaurant files, and we might like to see whether
we can combine all the data into a single dataframe. In the following code, we calcu‐
late the size of the data folder, including all files in it:

mib = 1024**2

total = 0
for filepath in Path('data').glob('*'):
 total += os.path.getsize(filepath) / mib

print(f'The data/ folder contains {total:.2f} MiB')

The data/ folder contains 271.80 MiB

File Size | 149

As a rule of thumb, reading in a file using pandas usually requires
at least five times the available memory as the file size. For exam‐
ple, reading in a 1 GiB file typically requires at least 5 GiB of avail‐
able memory. Memory is shared by all programs running on a
computer, including the operating system, web browsers, and
Jupyter notebook itself. A computer with 4 GiB total RAM might
have only 1 GiB available RAM with many applications running.
With 1 GiB available RAM, it is unlikely that pandas will be able to
read in a 1 GiB file.

There are several strategies for working with data that are far larger than what is feasi‐
ble to load into memory. We describe a few of them next.

The popular term big data generally refers to the scenario where the data are large
enough that even top-of-the-line computers can’t read the data directly into memory.
This is a common scenario in scientific domains like astronomy, where telescopes
capture images of space that can be petabytes (250) in size. While not quite as big,
social media giants, health-care providers, and other companies can also struggle
with large amounts of data.

Figuring out how to draw insights from these datasets is an important research prob‐
lem that motivates the fields of database engineering and distributed computing.
While we won’t cover these fields in this book, we provide a brief overview of basic
approaches:

Subset the data.
One simple approach is to work with portions of data. Rather than loading in the
entire source file, we can either select a specific part of it (e.g., one day’s worth of
data) or randomly sample the dataset. Because of its simplicity, we use this
approach quite often in this book. The natural downside is that we lose many of
the benefits of analyzing a large dataset, like being able to study rare events.

Use a database system.
As discussed in Chapter 7, relational database management systems (RDBMSs)
are specifically designed to store large datasets. SQLite is a useful system for
working with datasets that are too large to fit in memory but small enough to fit
on disk for a single machine. For datasets that are too large to fit on a single
machine, more scalable database systems like MySQL and PostgreSQL can be
used. These systems can manipulate data that are too big to fit into memory by
using SQL queries. Because of their advantages, RDBMSs are commonly used for
data storage in research and industry settings. One downside is that they often
require a separate server for the data that needs its own configuration. Another
downside is that SQL is less flexible in what it can compute than Python, which
becomes especially relevant for modeling. A useful hybrid approach is to use SQL

150 | Chapter 8: Wrangling Files

to subset, aggregate, or sample the data into batches that are small enough to read
into Python. Then we can use Python for more sophisticated analyses.

Use a distributed computing system.
Another approach to handling complex computations on large datasets is to use a
distributed computing system like MapReduce, Spark, or Ray. These systems
work best on tasks that can be split into many smaller parts where they divide
datasets into smaller pieces and run programs on all of the smaller datasets at
once. These systems have great flexibility and can be used in a variety of scenar‐
ios. Their main downside is that they can require a lot of work to install and con‐
figure properly because they are typically installed across many computers that
need to coordinate with one another.

It can be convenient to use Python to determine a file format, encoding, and size.
Another powerful tool for working with files is the shell; the shell is widely used and
has a more succinct syntax than Python. In the next section, we introduce a few
command-line tools available in the shell for carrying out the same tasks of finding
out information about a file before reading it into a dataframe.

The Shell and Command-Line Tools
Nearly all computers provide access to a shell interpreter, such as sh or bash or zsh.
These interpreters typically perform operations on the files on a computer with their
own language, syntax, and built-in commands.

We use the term command-line interface (CLI) tools to refer to the commands avail‐
able in a shell interpreter. Although we only cover a few CLI tools here, there are
many useful CLI tools that enable all sorts of operations on files. For instance, the fol‐
lowing command in the bash shell produces a list of all the files in the figures/ folder
for this chapter along with their file sizes:

$ ls -l -h figures/

The dollar sign is the shell prompt, showing the user where to type.
It’s not part of the command itself.

The basic syntax for a shell command is:

 command -options arg1 arg2

CLI tools often take one or more arguments, similar to how Python functions take
arguments. In the shell, we wrap arguments with spaces, not with parentheses or
commas. The arguments appear at the end of the command line, and they are usually

The Shell and Command-Line Tools | 151

the name of a file or some text. In the ls example, the argument to ls is figures/.
Additionally, CLI tools support flags that provide additional options. These flags are
specified immediately following the command name using a dash as a delimiter. In
the ls example, we provided the flags -l (to provide extra information about each
file) and -h (to provide file sizes in a more human-readable format). Many com‐
mands have default arguments and options, and the man tool prints a list of acceptable
options, examples, and defaults for any command. For example, man ls describes the
30 or so flags available for ls.

All CLI tools we cover in this book are specific to the sh shell inter‐
preter, the default interpreter for Jupyter installations on macOS
and Linux systems at the time of this writing. Windows systems
have a different interpreter, and the commands shown in the book
may not run on Windows, although Windows gives access to an sh
interpreter through its Linux Subsystem.
The commands in this section can be run in a terminal application,
or through a terminal opened by Jupyter.

We begin with an exploration of the filesystem containing the content for this chap‐
ter, using the ls tool:

$ ls

data wrangling_granularity.ipynb
figures wrangling_intro.ipynb
wrangling_command_line.ipynb wrangling_structure.ipynb
wrangling_datasets.ipynb wrangling_summary.ipynb
wrangling_formats.ipynb

To dive deeper and list the files in the data/ directory, we provide the directory name
as an argument to ls:

$ ls -l -L -h data/

total 556664
-rw-r--r-- 1 nolan staff 267M Dec 10 14:03 DAWN-Data.txt
-rw-r--r-- 1 nolan staff 645K Dec 10 14:01 businesses.csv
-rw-r--r-- 1 nolan staff 50K Jan 22 13:09 co2_mm_mlo.txt
-rw-r--r-- 1 nolan staff 455K Dec 10 14:01 inspections.csv
-rw-r--r-- 1 nolan staff 120B Dec 10 14:01 legend.csv
-rw-r--r-- 1 nolan staff 3.6M Dec 10 14:01 violations.csv

We added the -l flag to the command to get more information about each file. The
file size appears in the fifth column of the listing, and it’s more readable as specified
by the -h flag. When we have multiple simple option flags like -l, -h, and -L, we can
combine them together as a shorthand:

152 | Chapter 8: Wrangling Files

ls -lLh data/

When working with datasets in this book, our code will often use
an additional -L flag for ls and other CLI tools, such as du. We do
this because we set up the datasets in the book using shortcuts
(called symlinks). Usually, your code won’t need the -L flag unless
you’re working with symlinks too.

Other CLI tools for checking file size are wc and du. The command wc (short for word
count) provides helpful information about a file’s size in terms of the number of lines,
words, and characters in the file:

$ wc data/DAWN-Data.txt

 229211 22695570 280095842 data/DAWN-Data.txt

We can see from the output that DAWN-Data.txt has 229,211 lines and 280,095,842
characters. (The middle value is the file’s word count, which is useful for files that
contain sentences and paragraphs but not very useful for files containing data, such as
FWF-formatted values.)

The ls tool does not calculate the cumulative size of the contents of a folder. To prop‐
erly calculate the total size of a folder, including the files in the folder, we use du
(short for disk usage). By default, the du tool shows the size in units called blocks:

$ du -L data/

556664 data/

We commonly add the -s flag to du to show the file sizes for both files and folders
and the -h flag to display quantities in the standard KiB, MiB, or GiB format. The
asterisk in data/* in the following code tells du to show the size of every item in
the_data_ folder:

$ du -Lsh data/*

267M data/DAWN-Data.txt
648K data/businesses.csv
 52K data/co2_mm_mlo.txt
456K data/inspections.csv
4.0K data/legend.csv
3.6M data/violations.csv

To check the formatting of a file, we can examine the first few lines with the head
command or the last few lines with tail. These CLIs are very useful for peeking at a
file’s contents to determine whether it’s formatted as CSV, TSV, and so on. As an
example, let’s look at the inspections.csv file:

The Shell and Command-Line Tools | 153

$ head -4 data/inspections.csv

"business_id","score","date","type"
19,"94","20160513","routine"
19,"94","20171211","routine"
24,"98","20171101","routine"

By default, head displays the first 10 lines of a file. If we want to show, say, four lines,
then we add the option -n 4 to our command (or just -4 for short).

We can print the entire contents of the file using the cat command. However, you
should take care when using this command, as printing a large file can cause a crash.
The legend.csv file is small, and we can use cat to concatenate and print its contents:

$ cat data/legend.csv

"Minimum_Score","Maximum_Score","Description"
0,70,"Poor"
71,85,"Needs Improvement"
86,90,"Adequate"
91,100,"Good"

In many cases, using head or tail alone gives us a good enough sense of the file
structure to proceed with loading it into a dataframe.

Finally, the file command can help us determine a file’s encoding:

$ file -I data/*

data/DAWN-Data.txt: text/plain; charset=us-ascii
data/businesses.csv: application/csv; charset=iso-8859-1
data/co2_mm_mlo.txt: text/plain; charset=us-ascii
data/inspections.csv: application/csv; charset=us-ascii
data/legend.csv: application/csv; charset=us-ascii
data/violations.csv: application/csv; charset=us-ascii

We see (again) that all of the files are ASCII, except for businesses.csv, which has an
ISO-8859-1 encoding.

Commonly, we open a terminal program to start a shell interpreter.
However, Jupyter notebooks provide a convenience: if a line of
code in a Python code cell is prefixed with the ! character, the line
will go directly to the system’s shell interpreter. For example, run‐
ning !ls in a Python cell lists the files in the current directory.

Shell commands give us a programmatic way to work with files, rather than a point-
and-click “manual” approach. They are useful for the following:

154 | Chapter 8: Wrangling Files

Documentation
If you need to record what you did.

Error reduction
If you want to reduce typographical errors and other simple but potentially
harmful mistakes.

Reproducibility
If you need to repeat the same process in the future or you plan to share your
process with others. This gives you a record of your actions.

Volume
If you have many repetitive operations to perform, the size of the file you are
working with is large, or you need to perform things quickly. CLI tools can help
in all these cases.

After the data have been loaded into a dataframe, our next task is to figure out the
table’s shape and granularity. We start by finding the number of rows and columns in
the table (its shape). Then we need to understand what a row represents before we
begin to check the quality of the data. We cover these topics in the next section.

Table Shape and Granularity
As described earlier, we refer to a dataset’s structure as a mental representation of the
data, and in particular, we represent data that have a table structure by arranging val‐
ues in rows and columns. We use the term granularity to describe what each row in
the table represents, and the term shape quantifies the table’s rows and columns.

Now that we have determined the format of the restaurant-related files, we load them
into dataframes and examine their shapes:

bus = pd.read_csv('data/businesses.csv', encoding='ISO-8859-1')
insp = pd.read_csv("data/inspections.csv")
viol = pd.read_csv("data/violations.csv")

print(" Businesses:", bus.shape, "\t Inspections:", insp.shape,
 "\t Violations:", viol.shape)

 Businesses: (6406, 9) Inspections: (14222, 4) Violations: (39042, 3)

We find that the table with the restaurant information (the business table) has 6,406
rows and 9 columns. Now let’s figure out the granularity of this table. To start, we can
look at the first two rows:

 business_id name address city ... postal_code latitude longitude phone_number
0 19 NRGIZE

LIFESTYLE
CAFE

1200 VAN
NESS AVE, 3RD
FLOOR

San
Francisco

... 94109 37.79 -122.42 +14157763262

Table Shape and Granularity | 155

 business_id name address city ... postal_code latitude longitude phone_number
1 24 OMNI S.F.

HOTEL - 2ND
FLOOR
PANTRY

500
CALIFORNIA
ST, 2ND FLOOR

San
Francisco

... 94104 37.79 -122.40 +14156779494

2 rows × 9 columns

These two rows give us the impression that each record represents a particular restau‐
rant. But, we can’t tell from just two records whether or not this is the case. The field
named business_id implies that it is the unique identifier for the restaurant. We can
confirm this by checking whether the number of records in the dataframe matches
the number of unique values in the field business_id:

print("Number of records:", len(bus))
print("Number of unique business ids:", len(bus['business_id'].unique()))

Number of records: 6406
Number of unique business ids: 6406

The number of unique business_ids matches the number of rows in the table, so it
seems safe to assume that each row represents a restaurant. Since business_id
uniquely identifies each record in the dataframe, we treat business_id as the primary
key for the table. We can use primary keys to join tables (see Chapter 6). Sometimes a
primary key consists of two (or more) features. This is the case for the other two res‐
taurant files. Let’s continue the examination of the inspections and violations data‐
frames and find their granularity.

Granularity of Restaurant Inspections and Violations
We just saw that there are many more rows in the inspection table than the business
table. Let’s take a closer look at the first few inspections:

 business_id score date type
0 19 94 20160513 routine
1 19 94 20171211 routine
2 24 98 20171101 routine
3 24 98 20161005 routine

(insp
 .groupby(['business_id', 'date'])
 .size()
 .sort_values(ascending=False)
 .head(5)
)

business_id date
64859 20150924 2

156 | Chapter 8: Wrangling Files

87440 20160801 2
77427 20170706 2
19 20160513 1
71416 20171213 1
dtype: int64

The combination of restaurant ID and inspection date uniquely identifies each record
in this table, with the exception of three restaurants that have two records for their
ID-date combination. Let’s examine the rows for restaurant 64859:

insp.query('business_id == 64859 and date == 20150924')

 business_id score date type
7742 64859 96 20150924 routine
7744 64859 91 20150924 routine

This restaurant got two different inspection scores on the same day! How could this
happen? It may be that the restaurant had two inspections in one day, or it might be
an error. We address these sorts of questions when we consider data quality in Chap‐
ter 9. Since there are only three of these double-inspection days, we can ignore the
issue until we clean the data. So the primary key would be the combination of restau‐
rant ID and inspection date if same-day inspections are removed from the table.

Note that the business_id field in the inspections table acts as a reference to the pri‐
mary key in the business table. So business_id in insp is a foreign key because it
links each record in the inspections table to a record in the business table. This means
that we can readily join these two tables together.

Next, we examine the granularity of the third table, the one that contains the
violations:

 business_id date description
0 19 20171211 Inadequate food safety knowledge or lack of ce...
1 19 20171211 Unapproved or unmaintained equipment or utensils
2 19 20160513 Unapproved or unmaintained equipment or utensi...
...
39039 94231 20171214 High risk vermin infestation [date violation...
39040 94231 20171214 Moderate risk food holding temperature [dat...
39041 94231 20171214 Wiping cloths not clean or properly stored or ...

39042 rows × 3 columns

Looking at the first few records in this table, we see that each inspection has multiple
entries. The granularity appears to be at the level of a violation found in an inspec‐
tion. Reading the descriptions, we see that if corrected, a date is listed in the descrip‐
tion within square brackets:

Table Shape and Granularity | 157

viol.loc[39039, 'description']

'High risk vermin infestation [date violation corrected: 12/15/2017]'

In brief, we have found that the three food safety tables have different granularities.
Since we have identified primary and foreign keys for them, we can potentially join
these tables. If we are interested in studying inspections, we can join the violations
and inspections together using the business ID and inspection date. This would let us
connect the number of violations found during an inspection to the inspection score.

We can also reduce the inspection table to one per restaurant by selecting the most
recent inspection for each restaurant. This reduced data table essentially has a granu‐
larity of restaurant and may be useful for a restaurant-based analysis. In Chapter 9,
we cover these kinds of actions that reshape a data table, transform columns, and cre‐
ate new columns.

We conclude this section with a look at the shape and granularity of the DAWN sur‐
vey data.

DAWN Survey Shape and Granularity
As noted earlier in this chapter, the DAWN file has fixed-width formatting, and we
need to rely on a codebook to find out where the fields are. As an example, a snippet
of the codebook in Figure 8-2 tells us that age appears in positions 34 and 35 in a row,
and it is categorized into 11 age groups: 1 stands for age 5 and under, 2 for ages 6 to
11, …, and 11 for ages 65 and older. Also, –8 represents a missing value.

Figure 8-2. Screenshot of a portion of the DAWN coding for age

Earlier, we determined that the file contains 200,000 lines and over 280 million char‐
acters, so on average, there are about 1,200 characters per line. This might be why
they used a fixed-width rather than a CSV format. Think how much larger the file
would be if there was a comma between every field!

Given the tremendous amount of information on each line, let’s read just a few fea‐
tures into a dataframe. We can use the pandas.read_fwf method to do this. We

158 | Chapter 8: Wrangling Files

specify the exact positions of the fields to extract, and we provide names for these
fields and other information about the header and index:

colspecs = [(0,6), (14,29), (33,35), (35, 37), (37, 39), (1213, 1214)]
varNames = ["id", "wt", "age", "sex", "race","type"]
dawn = pd.read_fwf('data/DAWN-Data.txt', colspecs=colspecs,
 header=None, index_col=0, names=varNames)

 wt age sex race type

id
1 0.94 4 1 2 8
2 5.99 11 1 3 4
3 4.72 11 2 2 4
4 4.08 2 1 3 4
5 5.18 6 1 3 8

We can compare the rows in the table to the number of lines in the file:

dawn.shape

(229211, 5)

The number of rows in the dataframe matches the number of lines in the file. That’s
good. The granularity of the dataframe is a bit complicated due to the survey design.
Recall that these data are part of a large scientific study, with a complex sampling
scheme. A row represents an emergency room visit, so the granularity is at the emer‐
gency room visit level. However, in order to reflect the sampling scheme and be rep‐
resentative of the population of all drug-related ER visits in a year, weights are
provided. We must apply the weight to each record when we compute summary sta‐
tistics, build histograms, and fit models. (The wt field contains these values.)

The weights take into account the chance of an ER visit like this one appearing in the
sample. By “like this one” we mean a visit with similar features, such as the visitor
age, race, visit location, and time of day. Let’s examine the different values in wt:

dawn['wt'].value_counts()

wt
0.94 1719
84.26 1617
1.72 1435
 ...
1.51 1
3.31 1
3.33 1
Name: count, Length: 3500, dtype: int64

Table Shape and Granularity | 159

What Do These Weights Mean?
As a simplified example, suppose you ran a survey and 45% of your respondents were
under 18 years of age, but according to the US Census Bureau, only 22% of the popu‐
lation is under 18. You can adjust your survey responses to reflect the US population
by using a small weight (22/45) for those under 18 and a larger weight (78/55) for
those 18 and older. To see how we might use these weights, suppose the respondents
are asked whether they use Facebook:

Facebook < 18 18+ Total
No 1 20 21

Yes 44 35 79

Total 45 55 100

Overall, 79% of the respondents say they are Facebook users, but the sample is skewed
toward the younger generation. We can adjust the estimate with the weights so that
the age groups match the population. Then the adjusted percentage of Facebook users
drops to:

(22/45) × 44 + (78/55) × 35 = 71

The DAWN survey uses the same idea, except that it splits the groups much more
finely.

It is critical to include the survey weights in your analysis to get data that represents
the population at large. For example, we can compare the calculation of the propor‐
tion of females among the ER visits both with and without the weights:

print(f'Unweighted percent female: {np.average(dawn["sex"] == 2):.1%}')
print(f' Weighted percent female:',
 f'{np.average(dawn["sex"] == 2, weights=dawn["wt"]):.1%}')

Unweighted percent female: 48.0%
 Weighted percent female: 52.3%

These figures differ by more than 4 percentage points. The weighted version is a more
accurate estimate of the proportion of females among the entire population of drug-
related ER visits.

Sometimes the granularity can be tricky to figure out, like we saw with the inspec‐
tions data. And at other times, we need to take sampling weights into account, like for
the DAWN data. These examples show it’s important to take your time and review the
data descriptions before proceeding with analysis.

160 | Chapter 8: Wrangling Files

Summary
Data wrangling is an essential part of data analysis. Without it, we risk overlooking
problems in data that can have major consequences for future analysis. This chapter
covered an important first step in data wrangling: reading data from a plain-text
source file into a Python dataframe and identifying its granularity. We introduced dif‐
ferent types of file formats and encodings, and we wrote code that can read data from
these formats. We checked the size of source files and considered alternative tools for
working with large datasets.

We also introduced command-line tools as an alternative to Python for checking the
format, encoding, and size of a file. These CLI tools are especially handy for
filesystem-oriented tasks because of their simple syntax. We’ve only touched the sur‐
face of what CLI tools can do. In practice, the shell is capable of sophisticated data
processing and is well worth learning.

Understanding the shape and granularity of a table gives us insight into what a row in
a data table represents. This helps us determine whether the granularity is mixed,
aggregation is needed, or weights are required. After looking at the granularity of
your dataset, you should have answers to the following questions:

What does a record represent?
Clarity on this will help you correctly analyze data and state your findings.

Do all records in a table capture granularity at the same level?
Sometimes a table contains additional summary rows that have a different granu‐
larity, and you want to use only those rows that are at the right level of detail.

If the data are aggregated, how was the aggregation performed?
Summing and averaging are common types of aggregation. With averaged data,
the variability in the measurements is typically reduced and relationships often
appear stronger.

What kinds of aggregations might you perform on the data?
Aggregations might be useful or necessary to combine one data table with
another.

Knowing your table’s granularity is a first step to cleaning your data, and it informs
you of how to analyze the data. For example, we saw the granularity of the DAWN
survey is an ER visit. That naturally leads us to think about comparisons of patient
demographics to the US as a whole.

The wrangling techniques in this chapter help us bring data from a source file into a
dataframe and understand its structure. Once we have a dataframe, further wrangling
is needed to assess and improve quality and prepare the data for analysis. We cover
these topics in the next chapter.

Summary | 161

CHAPTER 9

Wrangling Dataframes

We often need to perform preparatory work on our data before we can begin our
analysis. The amount of preparation can vary widely, but there are a few basic steps to
move from raw data to data ready for analysis. Chapter 8 addressed the initial steps of
creating a dataframe from a plain-text source. In this chapter, we assess quality. To do
this, we perform validity checks on individual data values and entire columns. In
addition to checking the quality of the data, we determine whether or not the data
need to be transformed and reshaped to get ready for analysis. Quality checking (and
fixing) and transformation are often cyclical: the quality checks point us toward
transformations we need to make, and when we check the transformed columns to
confirm that our data are ready for analysis, we may discover they need further
cleaning.

Depending on the data source, we often have different expectations for quality. Some
datasets require extensive wrangling to get them into an analyzable form, and others
arrive clean and we can quickly launch into modeling. Here are some examples of
data sources and how much wrangling we might expect to do:

• Data from a scientific experiment or study are typically clean, are well docu‐
mented, and have a simple structure. These data are organized to be broadly
shared so that others can build on or reproduce the findings. They are typically
ready for analysis after little to no wrangling.

• Data from government surveys often come with very detailed codebooks and
metadata describing how the data are collected and formatted, and these datasets
are also typically ready for exploration and analysis right out of the box.

• Administrative data can be clean, but without inside knowledge of the source, we
may need to extensively check their quality. Also, since we often use these data

163

for a purpose other than why they were collected in the first place, we may need
to transform features or combine data tables.

• Informally collected data, such as data scraped from the web, can be quite messy
and tends to come with little documentation. For example, texts, tweets, blogs,
and Wikipedia tables usually require formatting and cleaning to transform them
into information ready for analysis.

In this chapter, we break down data wrangling into the following stages: assess data
quality, handle missing values, transform features, and reshape the data by modifying
its structure and granularity. An important step in assessing the quality of the data is
to consider its scope. Data scope was covered in Chapter 2, and we refer you there for
a fuller treatment of the topic.

To clean and prepare data, we also rely on exploratory data analysis, especially visual‐
izations. In this chapter, however, we focus on data wrangling and cover these other,
related topics in more detail in Chapters 10 and 11.

We use the datasets introduced in Chapter 8: the DAWN government survey of emer‐
gency room visits related to drug abuse, and the San Francisco administrative data on
food safety inspections of restaurants. But we begin by introducing the various data
wrangling concepts through another example that is simple enough and clean enough
that we can limit our focus in each of the wrangling steps.

Example: Wrangling CO
2
 Measurements from the

Mauna Loa Observatory
We saw in Chapter 2 that the National Oceanic and Atmospheric Administration
(NOAA) monitors CO2 concentrations in the air at the Mauna Loa Observatory. We
continue with this example and use it to introduce how to make data-quality checks,
handle missing values, transform features, and reshape tables. These data are in the
file data/co2_mm_mlo.txt. Let’s begin by figuring out the formatting, encoding, and
size of the source before we load it into a dataframe (see Chapter 8):

from pathlib import Path
import os
import chardet

co2_file_path = Path('data') / 'co2_mm_mlo.txt'

[os.path.getsize(co2_file_path),
 chardet.detect(co2_file_path.read_bytes())['encoding']]

[51131, 'ascii']

We have found that the file is plain text with ASCII encoding and about 50 KiB in
size. Since the file is not particularly large, we should have no trouble loading it into a

164 | Chapter 9: Wrangling Dataframes

https://www.noaa.gov
https://www.noaa.gov
https://oreil.ly/7HsQh

dataframe, but first we need to determine the file’s format. Let’s look at the first few
lines in the file:

lines = co2_file_path.read_text().split('\n')
len(lines)

811

lines[:6]

['# --',
 '# USE OF NOAA ESRL DATA',
 '# ',
 '# These data are made freely available to the public and the',
 '# scientific community in the belief that their wide dissemination',
 '# will lead to greater understanding and new scientific insights.']

We see that the file begins with information about the data source. We should read
this documentation before starting our analysis, but sometimes the urge to plunge
into the analysis wins over and we just start mucking about and discover properties
of the data as we go. So let’s quickly find where the actual data values are located:

lines[69:75]

['#',
 '# decimal average interpolated trend #days',
 '# date (season corr)',
 '1958 3 1958.208 315.71 315.71 314.62 -1',
 '1958 4 1958.292 317.45 317.45 315.29 -1',
 '1958 5 1958.375 317.50 317.50 314.71 -1']

We have found that the data begins on the 73rd line of the file. We also spot some
relevant characteristics:

• The values are separated by whitespace, possibly tabs.
• The data line up in precise columns. For example, the month appears in the sev‐

enth to eighth position of each line.
• The column headings are split over two lines.

We can use read_csv to read the data into a pandas DataFrame and provide argu‐
ments to specify that the separators are whitespace, there is no header (we will set our
own column names), and to skip the first 72 rows of the file:

co2 = pd.read_csv('data/co2_mm_mlo.txt',
 header=None, skiprows=72, sep='\s+',
 names=['Yr', 'Mo', 'DecDate', 'Avg', 'Int', 'Trend', 'days'])
co2.head(3)

 Yr Mo DecDate Avg Int Trend days
0 1958 3 1958.21 315.71 315.71 314.62 -1
1 1958 4 1958.29 317.45 317.45 315.29 -1

Example: Wrangling CO2 Measurements from the Mauna Loa Observatory | 165

 Yr Mo DecDate Avg Int Trend days
2 1958 5 1958.38 317.50 317.50 314.71 -1

We have successfully loaded the file contents into a dataframe, and we can see that the
granularity of the data is a monthly average CO2, from 1958 through 2019. Also, the
table shape is 738 by 7.

Since scientific studies tend to have very clean data, it’s tempting to jump right in and
make a plot to see how CO2 monthly averages have changed. The field DecDate con‐
veniently represents the month and year as a numeric feature, so we can easily make a
line plot:

 px.line(co2, x='DecDate', y='Avg', width=350, height=250,
 labels={'DecDate':'Date', 'Avg':'Average monthly CO₂'})

Yikes! Plotting the data has uncovered a problem. The four dips in the line plot look
odd. What happened here? We can check a few percentiles of the dataframe to see if
we can spot the problem:

co2.describe()[3:]

 Yr Mo DecDate Avg Int Trend days
min 1958.0 1.0 1958.21 -99.99 312.66 314.62 -1.0
25% 1973.0 4.0 1973.56 328.59 328.79 329.73 -1.0
50% 1988.0 6.0 1988.92 351.73 351.73 352.38 25.0
75% 2004.0 9.0 2004.27 377.00 377.00 377.18 28.0
max 2019.0 12.0 2019.62 414.66 414.66 411.84 31.0

This time, looking a bit more closely at the range of values, we see that some data
have unusual values like -1 and -99.99. If we read the information at the top of the
file more carefully, we find that -99.99 denotes a missing monthly average and -1

166 | Chapter 9: Wrangling Dataframes

signifies a missing value for the number of days the equipment was in operation that
month. Even with relatively clean data, it’s a good practice to read the documentation
and make a few quality checks before jumping into the analysis stage.

Quality Checks
Let’s step back for a moment and perform some quality checks. We might confirm
that we have the expected number of observations, look for unusual values, and
cross-check anomalies that we find against the values in other features.

First, we consider the shape of the data. How many rows should we have? From look‐
ing at the head and tail of the dataframe, the data appear to be in chronological order,
beginning with March 1958 and ending with August 2019. This means we should
have 12 × (2019 − 1957) − 2 − 4 = 738 records, which we can check against the shape
of the dataframe:

co2.shape

(738, 7)

Our calculations match the number of rows in the data table.

Next, let’s check the quality of the features, starting with Mo. We expect the values to
range from 1 to 12, and each month should have 2019 – 1957 = 62 or 61 instances
(since the recordings begin in March of the first year and end in August of the most
recent year):

co2["Mo"].value_counts().reindex(range(1,13)).tolist()

[61, 61, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61]

As expected, Jan, Feb, Sep, Oct, Nov, and Dec have 61 occurrences and the rest 62.

Now let’s examine the column called days with a histogram:

px.histogram(co2, x='days', width=350, height=250,
 labels={'days':'Days operational in a month'})

Example: Wrangling CO2 Measurements from the Mauna Loa Observatory | 167

We see that a handful of months have averages based on measurements taken on
fewer than half the days. In addition, there are nearly 200 missing values. A scatter‐
plot can help us cross-check missing data against the year of the recording:

px.scatter(co2, x='Yr', y='days', width=350, height=250,
 labels={'Yr':'Year', 'days':'Days operational in month' })

The line along the bottom left of the plot shows us that all of the missing data are in
the early years of operation. The number of days of operation of the equipment may
not have been collected in the early days. It also appears that there might have been
problems with the equipment in the mid- to late ’80s. What do we do with these con‐
jectures? We can try to confirm them by looking through documentation about the
historical readings. If we are concerned about the impact on the CO2 averages for
records with missing values for the number of days of operation, then a simple solu‐
tion would be to drop the earliest recordings. However, we would want to delay such

168 | Chapter 9: Wrangling Dataframes

action until after we have examined the time trends and assess whether there are any
potential problems with the CO2 averages in those early days.

Next, let’s return to the -99.99 values for the average CO2 measurement and begin
our checks with a histogram:

px.histogram(co2, x='Avg', width=350, height=250,
 labels={'Avg':'Average monthly CO₂'})

The recorded values are in the 300–400 range, which is what we expect based on our
research into CO2 levels. We also see that there are only a few missing values. Since
there aren’t many missing values, we can examine all of them:

co2[co2["Avg"] < 0]

 Yr Mo DecDate Avg Int Trend days
3 1958 6 1958.46 -99.99 317.10 314.85 -1
7 1958 10 1958.79 -99.99 312.66 315.61 -1
71 1964 2 1964.12 -99.99 320.07 319.61 -1
72 1964 3 1964.21 -99.99 320.73 319.55 -1
73 1964 4 1964.29 -99.99 321.77 319.48 -1
213 1975 12 1975.96 -99.99 330.59 331.60 0
313 1984 4 1984.29 -99.99 346.84 344.27 2

We are faced with the question of what to do with the -99.99 values. We have seen
already the problems of leaving these values as is in a line plot. There are several
options, and we describe them next.

Example: Wrangling CO2 Measurements from the Mauna Loa Observatory | 169

Addressing Missing Data
The -99.99s for average CO2 levels indicate missing recordings. These interfere with
our statistical summaries and plots. It’s good to know which values are missing, but
we need to do something about them. We might drop those records, replace -99.99
with NaN, or substitute 99.99 with a likely value for the average CO2. Let’s examine
each of these three options.

Note that the table already comes with a substitute value for the -99.99. The column
labeled Int has values that exactly match those in Avg, except when Avg is -99.99,
and then a “reasonable” estimate is used instead.

To see the effect of each option, let’s zoom in on a short time period—say the meas‐
urements in 1958—where we know we have two missing values. We can create a
time-series plot for the three cases: drop the records with -99.99s (left plot), use NaN
for missing values (middle plot), and substitute an estimate for -99.99 (right plot):

When we look closely, we can see the difference between each of these plots. The left‐
most plot connects dots across a two-month time period, rather than one month. In
the middle plot, the line breaks where the data are missing, and on the right, we can
see that months 6 and 10 now have values. In the big picture, since there are only
seven values missing from the 738 months, all of these options work. However, there
is some appeal to the right plot since the seasonal trends are more cleanly discernible.

The method used to interpolate the CO2 measurements for the missing values is an
averaging process that takes into consideration the month and year. The idea is to
reflect both seasonal changes and the long-term trend. This technique is described in
greater detail in the documentation at the top of the datafile.

These plots have shown the granularity of the data to be monthly measurements, but
other granularity options are available to us. We discuss this next.

170 | Chapter 9: Wrangling Dataframes

Reshaping the Data Table
The CO2 measurements taken at the Mauna Loa Observatory are also available both
daily and hourly. The hourly data has a finer granularity than the daily data; recipro‐
cally, the daily data is coarser than the hourly data.

Why not always just use the data with the finest granularity available? On a computa‐
tional level, fine-grained data can become quite large. The Mauna Loa Observatory
started recording CO2 levels in 1958. Imagine how many rows the data table would
contain if the facility provided measurements every single second! But more impor‐
tantly, we want the granularity of the data to match our research question. Suppose
we want to see whether CO2 levels have risen over the past 50+ years, consistent with
global warming predictions. We don’t need a CO2 measurement every second.
In fact, we might well be content with yearly averages where the seasonal patterns are
smoothed away. We can aggregate the monthly measurements, changing the granu‐
larity to annual averages, and make a plot to display the general trend. We can
use aggregation to go to a coarser granularity—in pandas, we
use .groupby() and .agg():

Indeed, we see a rise by nearly 100 ppm of CO2 since Mauna Loa began recording in
1958.

To recap, after reading the whitespace-separated, plain-text file into a dataframe, we
began to check its quality. We used the scope and context of the data to affirm that its
shape matched the range of dates of collection. We confirmed that the values and
counts for the month were as expected. We ascertained the extent of missing values in
the features, and we looked for connections between missing values and other fea‐
tures. We considered three approaches to handling the missing data: drop records,
work with NaN values, and impute values to have a full table. And, finally, we changed
the granularity of the dataframe by rolling it up from a monthly to an annual average.

Example: Wrangling CO2 Measurements from the Mauna Loa Observatory | 171

This change in granularity removed seasonal fluctuations and focused on the long-
term trend in the level of CO2 in the atmosphere. The next four sections of this chap‐
ter expand on these actions to wrangle data into a form suitable for analysis: quality
checks, missing value treatments, transformations, and shape adjustments. We begin
with quality checks.

Quality Checks
Once your data are in a table and you understand the scope and granularity, it’s time
to inspect for quality. You may have come across errors in the source as you examined
and wrangled the file into a dataframe. In this section, we describe how to continue
this inspection and carry out a more comprehensive assessment of the quality of the
features and their values. We consider data quality from four vantage points:

Scope
Do the data match your understanding of the population?

Measurements and values
Are the values reasonable?

Relationships
Are related features in agreement?

Analysis
Which features might be useful in a future analysis?

We describe each of these points in turn, beginning with scope.

Quality Based on Scope
In Chapter 2, we addressed whether or not the data that have been collected can ade‐
quately address the problem at hand. There, we identified the target population,
access frame, and sample in collecting the data. That framework helps us consider
possible limitations that might impact the generalizability of our findings.

While these broader data-scope considerations are important as we deliberate our
final conclusions, they are also useful for checking data quality. For example, for the
San Francisco restaurant inspections data introduced in Chapter 8, a side investiga‐
tion tells us that zip codes in the city should start with 941. But a quick check shows
that several zip codes begin with other digits:

bus['postal_code'].value_counts().tail(10)

92672 1
64110 1
94120 1
 ..
94621 1

172 | Chapter 9: Wrangling Dataframes

941033148 1
941 1
Name: postal_code, Length: 10, dtype: int64

This verification using scope helps us spot potential problems.

As another example, a bit of background reading at Climate.gov and NOAA on the
topic of atmospheric CO2 reveals that typical measurements are about 400 ppm
worldwide. So we can check whether the monthly averages of CO2 at Mauna Loa lie
between 300 and 450 ppm.

Next, we check data values against codebooks and the like.

Quality of Measurements and Recorded Values
We can use also check the quality of measurements by considering what might be a
reasonable value for a feature. For example, imagine what might be a reasonable
range for the number of violations in a restaurant inspection: possibly, 0 to 5. Other
checks can be based on common knowledge of ranges: a restaurant inspection score
must be between 0 and 100; months run between 1 and 12. We can use documenta‐
tion to tell us the expected values for a feature. For example, the type of emergency
room visit in the DAWN survey, introduced in Chapter 8, has been coded as 1, 2, …,
8 (see Figure 9-1). So we can confirm that all values for the type of visit are indeed
integers between 1 and 8.

Figure 9-1. Screenshot of the description of the emergency room visit type (CASETYPE)
variable in the DAWN survey (the typo SUICICDE appears in the actual codebook)

Quality Checks | 173

https://www.climate.gov
https://oreil.ly/UBPDY

We also want to ensure that the data type matches our expectations. For example, we
expect a price to be a number, whether or not it’s stored as integer, floating point, or
string. Confirming that the units of measurement match what is expected can be
another useful quality check to perform (for example, weight values recorded in
pounds, not kilograms). We can devise checks for all of these situations.

Other checks can be devised by comparing two related features.

Quality Across Related Features
At times, two features have built-in conditions on their values that we can cross-
check for internal consistency. For example, according to the documentation for the
DAWN study, alcohol consumption is only considered a valid reason for a visit to the
ER for patients under age 21, so we can check that any record with “alcohol” for the
type of visit has an age under 21. A cross-tabulation of the features type and age can
confirm that this constraint is met:

display_df(pd.crosstab(dawn['age'], dawn['type']), rows=12)

type 1 2 3 4 5 6 7 8

age
-8 2 2 0 21 5 1 1 36
1 0 6 20 6231 313 4 2101 69
2 8 2 15 1774 119 4 119 61
3 914 121 2433 2595 1183 48 76 4563
4 817 796 4953 3111 1021 95 44 6188
5 983 1650 0 4404 1399 170 48 9614
6 1068 1965 0 5697 1697 140 62 11408
7 957 1748 0 5262 1527 100 60 10296
8 1847 3411 0 10221 2845 113 115 18366
9 1616 3770 0 12404 3407 75 150 18381
10 616 1207 0 12291 2412 31 169 7109
11 205 163 0 24085 2218 12 308 1537

The cross-tabulation confirms that all of the alcohol cases (type is 3) have an age
under 21 (these are coded as 1, 2, 3, and 4). The data values are as expected.

One last type of quality check pertains to the amount of information found in a
feature.

Quality for Analysis
Even when data pass the previous quality checks, problems can arise with its useful‐
ness. For example, if all but a handful of values for a feature are identical, then that

174 | Chapter 9: Wrangling Dataframes

feature adds little to the understanding of underlying patterns and relationships. Or if
there are too many missing values, especially if there is a discernible pattern in the
missing values, our findings may be limited. Plus, if a feature has many bad/corrupted
values, then we might question the accuracy of even those values that fall in the
appropriate range.

We see in the following code that the type of restaurant inspection in San Francisco
can be either routine or from a complaint. Since only one of the 14,000+ inspections
was from a complaint, we lose little if we drop this feature, and we might also want to
drop that single inspection since it represents an anomaly:

pd.value_counts(insp['type'])

routine 14221
complaint 1
Name: type, dtype: int64

Once we find problems with our data, we need to figure out what to do.

Fixing the Data or Not
When you uncover problems with the data, essentially you have four options: leave
the data as is, modify values, remove features, or drop records.

Leave it as is
Not every unusual aspect of the data needs to be fixed. You might have discov‐
ered a characteristic of your data that will inform you about how to do your anal‐
ysis and otherwise does not need correcting. Or you might find that the problem
is relatively minor and most likely will not impact your analysis, so you can leave
the data as is. Or, you might want to replace corrupted values with NaN.

Modify individual values
If you have figured out what went wrong and can correct the value, then you can
opt to change it. In this case, it’s a good practice to create a new feature with the
modified value and preserve the original feature, like in the CO2 example.

Remove a column
If many values in a feature have problems, then consider eliminating that feature
entirely. Rather than excluding a feature, there may be a transformation that
allows you to keep the feature while reducing the level of detail recorded.

Drop records
In general, we do not want to drop a large number of observations from a dataset
without good reason. Instead, try to scale back your investigation to a particular
subgroup of the data that is clearly defined by some criteria, and does not simply
correspond dropped records with corrupted values. When you discover that an
unusual value is in fact correct, you still might decide to exclude the record from

Quality Checks | 175

your analysis because it’s so different from the rest of your data and you do not
want it to overly influence your analysis.

Whatever approach you take, you will want to study the possible impact of the
changes that you make on your analysis. For example, try to determine whether the
records with corrupted values are similar to one another, and different from the rest
of the data.

Quality checks can reveal issues in the data that need to be addressed before proceed‐
ing with analysis. One particularly important type of check is to look for missing val‐
ues. We suggested that there may be times when you want to replace corrupted data
values with NaN, and hence treat them as missing. At other times, data might arrive
missing. What to do with missing data is an important topic, and there is a lot of
research on this problem; we cover ways to address missing data in the next section.

Missing Values and Records
In Chapter 3, we considered the potential problems when the population and the
access frame are not in alignment, so we can’t access everyone we want to study. We
also described problems when someone refuses to participate in the study. In these
cases, entire records/rows are missing, and we discussed the kinds of bias that can
occur due to missing records. If nonrespondents differ in critical ways from respond‐
ents or if the nonresponse rate is not negligible, then our analysis may be seriously
flawed. The example in Chapter 3 on election polls showed that increasing the sample
size without addressing nonresponse does not reduce nonresponse bias. Also in that
chapter, we discussed ways to prevent nonresponse. These preventive measures
include using incentives to encourage response, keeping surveys short, writing clear
questions, training interviewers, and investing in extensive follow-up procedures.
Unfortunately, despite these efforts, some amount of nonresponse is unavoidable.

When a record is not entirely missing, but a particular field in a record is unavailable,
we have nonresponse at the field level. Some datasets use a special coding to signify
that the information is missing. We saw that the Mauna Loa data uses -99.99 to indi‐
cate a missing CO2 measurement. We found only seven of these values among 738
rows in the table. In this case, we showed that these missing values have little impact
on the analysis.

The values for a feature are called missing completely at random when those records
with the missing data are like a randomly chosen subset of records. That is, whether
or not a record has a missing value does not depend on the unobserved feature, the
values of other features, or the sampling design. For example, if someone accidentally
breaks the laboratory equipment at Mauna Loa and CO2 is not recorded for a day,
there is no reason to think that the level of CO2 that day had something to do with the
lost measurements.

176 | Chapter 9: Wrangling Dataframes

At other times, we consider values missing at random given covariates (covariates are
other features in the dataset). For example, the type of an ER visit in the DAWN sur‐
vey is missing at random given covariates if, say, the nonresponse depends only on
race and sex (and not on the type of visit or anything else). In these limited cases, the
observed data can be weighted to accommodate for nonresponse.

In some surveys, missing information is further categorized as to whether the
respondent refused to answer, the respondent was unsure of the answer, or the inter‐
viewer didn’t ask the question. Each of these types of missing values is recorded using
a different value. For example, according to the codebook, many questions in the
DAWN survey use a code of -7 for not applicable, -8 for not documented, and -9 for
missing. Codings such as these can help us further refine our study of nonresponse.

After nonresponse has occurred, it is sometimes possible to use models to predict the
missing data. We describe this process next. But remember, predicting missing obser‐
vations is never as good as observing them in the first place.

At times, we substitute a reasonable value for a missing one to create a “clean” data‐
frame. This process is called imputation. Some common approaches for imputing val‐
ues are deductive, mean, and hot-deck imputation.

In deductive imputation, we fill in a value through logical relationships with other
features. For example, here is a row in the business dataframe for San Francisco res‐
taurant inspections. The zip code is erroneously marked as “Ca” and latitude and lon‐
gitude are missing:

bus[bus['postal_code'] == "Ca"]

 business_id name address city ... postal_code latitude longitude phone_number
5480 88139 TACOLICIOUS 2250

CHESTNUT
ST

San
Francisco

... Ca NaN NaN +14156496077

1 row × 9 columns

We can look up the address on the USPS website to get the correct zip code, and we
can use Google Maps to find the latitude and longitude of the restaurant to fill in
these missing values.

Mean imputation uses an average value from rows in the dataset that aren’t missing.
As a simple example, if a dataset on test scores is missing scores for some students,
mean imputation would fill in the missing value using the mean of the nonmissing
scores. A key issue with mean imputation is that the variability in the imputed feature
will be smaller because the feature now has values that are identical to the mean. This
affects later analysis if not handled properly—for instance, confidence intervals will
be smaller than they should be (these topics are covered in Chapter 17). The missing

Missing Values and Records | 177

https://oreil.ly/lwBYh

values for CO2 in Mauna Loa used a more sophisticated averaging technique that
included neighboring seasonal values.

Hot-deck imputation uses a chance process to select a value at random from rows
that have values. As a simple example, hot-deck imputation could fill in missing test
scores by randomly choosing another test score in the dataset. A potential problem
with hot-deck imputation is that the strength of a relationship between the features
might weaken because we have added randomness.

For mean and hot-deck imputation, we often impute values based on other records in
the dataset that have similar values in other features. More sophisticated imputation
techniques use nearest-neighbor methods to find similar subgroups of records and
others use regression techniques to predict the missing value.

With all of these types of imputation, we should create a new feature that contains the
altered data or a new feature to indicate whether or not the response in the original
feature has been imputed so that we can track our changes.

Decisions to keep or drop a record with a missing value, to change a value, or to
remove a feature may seem small, but they can be critical. One anomalous record can
seriously impact your findings. Whatever you decide, be sure to check the impact of
dropping or changing features and records. And be transparent and thorough in
reporting any modifications you make to the data. It’s best to make these changes
programmatically to reduce potential errors and enable others to confirm exactly
what you have done by reviewing your code.

The same transparency and reproducible precautions hold for data transformations,
which we discuss next.

Transformations and Timestamps
Sometimes a feature is not in a form well-suited for analysis, and so we transform it.
There are many reasons a feature might need a transformation: the value codings
might not be useful for analysis, we may want to apply a mathematical function to a
feature, or we might want to pull information out of a feature and create a new fea‐
ture. We describe these three basic kinds of transformations: type conversions, math‐
ematical transformations, and extractions:

Type conversion
This kind of transformation occurs when we convert the data from one format to
another to make the data more useful for analysis. We might convert information
stored as a string to another format. For example, we would want to convert pri‐
ces reported as strings to numbers (like changing the string "$2.17" to the num‐
ber 2.17) so that we can compute summary statistics. Or we might want to
convert a time stored as a string, such as "1955-10-12", to a pandas Timestamp

178 | Chapter 9: Wrangling Dataframes

object. Yet another example occurs when we lump categories together, such as
reducing the 11 categories for age in DAWN to 5 groupings.

Mathematical transformation
One kind of mathematical transformation is when we change the units of a meas‐
urement from, say, pounds to kilograms. We might make unit conversions so that
statistics on our data can be directly compared to statistics on other datasets. Yet
another reason to transform a feature is to make its distribution more symmetric
(this notion is covered in more detail in Chapter 10). The most common trans‐
formation for handling asymmetry is the logarithm. Lastly, we might want to cre‐
ate a new feature from arithmetic operations. For example, we can combine
heights and weights to create body mass indexes by calculating height/weight2.

Extraction
Sometimes we want to create a feature by extraction, where the new feature con‐
tains partial information taken from another feature. For example, the inspection
violations consist of strings with descriptions of violations, and we may only be
interested in whether the violation is related to, say, vermin. We can create a new
feature that is True if the violation contains the word vermin in its text descrip‐
tion and False otherwise. This conversion of information to logical values (or 0–
1 values) is extremely useful in data science. The upcoming example in this chap‐
ter gives a concrete use-case for these binary features.

We cover many other examples of useful transformations in Chapter 10. For the rest
of this section, we explain one more kind of transformation related to working with
dates and times. Dates and times appear in many kinds of data, so it’s worth learning
how to work with these data types.

Transforming Timestamps
A timestamp is a data value that records a specific date and time. For instance, a time‐
stamp could be recorded like Jan 1 2020 2pm or 2021-01-31 14:00:00 or 2017 Mar
03 05:12:41.211 PDT. Timestamps come in many different formats! This kind of
information can be useful for analysis, because it lets us answer questions like, “What
times of day do we have the most website traffic?” When we work with timestamps,
we often need to parse them for easier analysis.

Let’s take a look at an example. The inspections dataframe for the San Francisco res‐
taurants includes the date when restaurant inspections happened:

insp.head(4)

Transformations and Timestamps | 179

1 This means that each uses 64 bits of memory for each value and that each is accurate to the nanosecond (or
ns, for short).

 business_id score date type
0 19 94 20160513 routine
1 19 94 20171211 routine
2 24 98 20171101 routine
3 24 98 20161005 routine

By default, however, pandas reads in the date column as an integer:

insp['date'].dtype

dtype('int64')

This storage type makes it hard to answer some useful questions about the data. Let’s
say we want to know whether inspections happen more often on weekends or week‐
days. To answer this question, we want to convert the date column to the pandas
Timestamp storage type and extract the day of the week.

The date values appear to come in the format YYYYMMDD, where YYYY, MM, and DD cor‐
respond to the four-digit year, two-digit month, and two-digit day, respectively. The
pd.to_datetime() method can parse the date strings into objects, where we can pass
in the format of the dates as a date format string:

date_format = '%Y%m%d'

insp_dates = pd.to_datetime(insp['date'], format=date_format)
insp_dates[:3]

0 2016-05-13
1 2017-12-11
2 2017-11-01
Name: date, dtype: datetime64[ns]

We can see that insp_dates now has a dtype of datetime64[ns], which means that
the values were successfully converted into pd.Timestamp objects.1

pandas has special methods and properties for Series objects that hold timestamps
using the .dt accessor. For instance, we can easily pull out the year for each
timestamp:

insp_dates.dt.year[:3]

0 2016
1 2017
2 2017
Name: date, dtype: int32

180 | Chapter 9: Wrangling Dataframes

https://oreil.ly/TFWcU

The pandas documentation has the complete details on the .dt accessor. By looking
at the documentation, we see that the .dt.day_of_week attribute gets the day of the
week for each timestamp (Monday = 0, Tuesday = 1, …, Sunday = 6). So let’s assign
new columns to the dataframe that contain both the parsed timestamps and the day
of the week:

insp = insp.assign(timestamp=insp_dates,
 dow=insp_dates.dt.dayofweek)
insp.head(3)

 business_id score date type timestamp dow
0 19 94 20160513 routine 2016-05-13 4
1 19 94 20171211 routine 2017-12-11 0
2 24 98 20171101 routine 2017-11-01 2

Now we can see whether restaurant inspectors favor a certain day of the week by
grouping on the day of the week:

insp['dow'].value_counts().reset_index()

 dow count
0 2 3281
1 1 3264
2 3 2497
3 0 2464
4 4 2101
5 6 474
6 5 141

Transformations and Timestamps | 181

https://oreil.ly/_ceNL

As expected, inspections rarely happen on the weekend. We also find that Tuesday
and Wednesday are the most popular days for an inspection.

We have performed many wranglings on the inspections table. One approach to
tracking these modifications is to pipe these actions from one to the next. We
describe the idea of piping next.

Piping for Transformations
In data analyses, we typically apply many transformations to the data, and it is easy to
introduce bugs when we repeatedly mutate a dataframe, in part because Jupyter note‐
books let us run cells in any order we want. As a good practice, we recommend
putting transformation code into functions with helpful names and using the Data
Frame.pipe() method to chain transformations together.

Let’s rewrite the earlier timestamp parsing code into a function and add the time‐
stamps back into the dataframe as a new column, along with a second column con‐
taining the year of the timestamp:

date_format = '%Y%m%d'

def parse_dates_and_years(df, column='date'):
 dates = pd.to_datetime(df[column], format=date_format)
 years = dates.dt.year
 return df.assign(timestamp=dates, year=years)

Now we can pipe the insp dataframe through this function using .pipe():

insp = (pd.read_csv("data/inspections.csv")
 .pipe(parse_dates_and_years))

We can chain many .pipe() calls together. For example, we can extract the day of the
week from the timestamps:

def extract_day_of_week(df, col='timestamp'):
 return df.assign(dow=df[col].dt.day_of_week)

insp = (pd.read_csv("data/inspections.csv")
 .pipe(parse_dates_and_years)
 .pipe(extract_day_of_week))
insp

 business_id score date type timestamp year dow
0 19 94 20160513 routine 2016-05-13 2016 4
1 19 94 20171211 routine 2017-12-11 2017 0
2 24 98 20171101 routine 2017-11-01 2017 2
...
14219 94142 100 20171220 routine 2017-12-20 2017 2
14220 94189 96 20171130 routine 2017-11-30 2017 3

182 | Chapter 9: Wrangling Dataframes

 business_id score date type timestamp year dow
14221 94231 85 20171214 routine 2017-12-14 2017 3

14222 rows × 7 columns

There are several key advantages of using pipe(). When there are many transforma‐
tions on a single dataframe, it’s easier to see what transformations happen since we
can simply read the function names. Also, we can reuse transformation functions for
different dataframes. For instance, the viol dataframe, which contains restaurant
safety violations, also has a date column. This means we can use .pipe() to reuse the
timestamp parsing function without needing to write extra code. Convenient!

viol = (pd.read_csv("data/violations.csv")
 .pipe(parse_dates_and_years))
viol.head(2)

 business_id date description timestamp year
0 19 20171211 Inadequate food safety knowledge or lack of ce... 2017-12-11 2017
1 19 20171211 Unapproved or unmaintained equipment or utensils 2017-12-11 2017

A different sort of transformation changes the shape of a dataframe by dropping
unneeded columns, taking a subset of the rows, or rolling up the rows to a coarser
granularity. We describe these structural changes next.

Modifying Structure
If a dataframe has an inconvenient structure, it can be difficult to do the analysis that
we want. The wrangling process often reshapes the dataframe in some way to make
the analysis easier and more natural. These changes can simply take a subset of the
rows and/or columns from the table or change the table’s granularity in a more fun‐
damental way. In this section, we use the techniques from Chapter 6 to show how to
modify structure in the following ways:

Simplify the structure
If a dataframe has features that are not needed in our analysis, then we may want
to drop these extraneous columns to make handling the dataframe easier. Or if
we want to focus on a particular period of time or geographic area, we may want
to take a subset of the rows (subsetting is covered in Chapter 6). In Chapter 8,
we’ll read into our dataframe a small set of features from the hundreds available
in the DAWN survey because we are interested in understanding the patterns of
types of ER visit by demographics of the patient. In Chapter 10, we’ll restrict an
analysis of home sale prices to one year and a few cities in an effort to reduce the
impact of inflation and to better study the effect of location on sale price.

Modifying Structure | 183

Adjust the granularity
In an earlier example in this chapter, CO2 measurements were aggregated from
monthly averages to yearly averages in order to better visualize annual trends. In
the next section, we provide another example where we aggregate violation-level
data to the inspection level so that it can be combined with the restaurant inspec‐
tion scores. In both of these examples, we adjust the granularity of the dataframe
to work with a coarser granularity by grouping together records and aggregating
values. With the CO2 measurements, we grouped the monthly values from the
same year and then averaged them. Other common aggregations of a group are
the number of records, sum, minimum, maximum, and first or last value in the
group. The details of adjusting granularity of pandas dataframes can be found in
Chapter 6, including how to group by multiple column values.

Address mixed granularity
At times, a dataset might have mixed granularity, where records are at different
levels of detail. A common case is in data provided by government agencies
where data at the county and state levels are included in the same file. When this
happens, we usually want to split the dataframe into two, one at the county level
and the other at the state level. This makes county-level and state-level analyses
much easier, even feasible, to perform.

Reshape the structure
Data, especially from government sources, can be shared as pivot tables. These
wide tables have data values as column names and are often difficult to use in
analysis. We may need to reshape them into a long form. Figure 9-2 depicts the
same data stored in both wide and long data tables. Each row of the wide data
table maps to three rows in the long data table, as highlighted in the tables.
Notice that in the wide data table, each row has three values, one for each month.
In the long data table, each row only has a value for one month. Long data tables
are generally easier to aggregate for future analysis. Because of this, long-form
data is also frequently called tidy data.

184 | Chapter 9: Wrangling Dataframes

https://doi.org/10.18637/jss.v059.i10

Figure 9-2. An example of a wide data table (top) and a long data table (bottom) con‐
taining the same data

To demonstrate reshaping, we can put the CO2 data into a wide dataframe that is like
a pivot table in shape. There is a column for each month and a row for each year:

co2_pivot = pd.pivot_table(
 co2[10:34],
 index='Yr', # Column to turn into new index
 columns='Mo', # Column to turn into new columns
 values='Avg') # Column to aggregate

co2_wide = co2_pivot.reset_index()

display_df(co2_wide, cols=10)

Mo Yr 1 2 3 4 ... 8 9 10 11 12
0 1959 315.62 316.38 316.71 317.72 ... 314.80 313.84 313.26 314.8 315.58
1 1960 316.43 316.97 317.58 319.02 ... 315.91 314.16 313.83 315.0 316.19

2 rows × 13 columns

The column headings are months, and the cell values in the grid are the CO2 monthly
averages. We can turn this dataframe back into a long, aka tall, dataframe, where the
column names become a feature, called month, and the values in the grid are reorgan‐
ized into a second feature, called average:

co2_long = co2_wide.melt(id_vars=['Yr'],
 var_name='month',
 value_name='average')

display_df(co2_long, rows=4)

Modifying Structure | 185

 Yr month average
0 1959 1 315.62
1 1960 1 316.43
...
22 1959 12 315.58
23 1960 12 316.19

24 rows × 3 columns

Notice that the data has been recaptured in its original shape (although the rows are
not in their original order). Wide-form data is more common when we expect read‐
ers to look at the data table itself, like in an economics article or news story. But long-
form data is more useful for data analysis. For instance, co2_long lets us write short
pandas code to group by either year or month, while the wide-form data makes it dif‐
ficult to group by year. The .melt() method is particularly useful for converting
wide-form into long-form data.

These structural modifications have focused on a single table. However, we often
want to combine information that is spread across multiple tables. In the next section,
we combine the techniques introduced in this chapter to wrangle the restaurant
inspection data and address joining tables.

Example: Wrangling Restaurant Safety Violations
We wrap up this chapter with an example that demonstrates many data wrangling
techniques. Recall from Chapter 8 that the San Francisco restaurant inspection data
are stored in three tables: bus (for businesses/restaurants), insp (for inspections), and
viol (for safety violations). The violations dataset contains detailed descriptions of
violations found during an inspection. We would like to capture some of this infor‐
mation and connect it to the inspection score, which is an inspection-level dataset.

Our goal is to figure out the kinds of safety violations associated with lower restaurant
safety scores. This example covers several key ideas in data wrangling related to
changing structure:

• Filtering to focus on a narrower segment of data
• Aggregation to modify the granularity of a table
• Joining to bring together information across tables

Additionally, an important part of this example demonstrates how we transform text
data into numeric quantities for analysis.

186 | Chapter 9: Wrangling Dataframes

As a first step, let’s simplify the structure by reducing the data to inspections from one
year. (Recall that this dataset contains four years of inspection information.) In the
following code, we tally the number of records for each year in the inspections table:

pd.value_counts(insp['year'])

year
2016 5443
2017 5166
2015 3305
2018 308
Name: count, dtype: int64

Reducing the data to cover one year of inspections will simplify our analysis. Later, if
we want, we can return to carry out an analysis with all four years of data.

Narrowing the Focus
We restrict our data wrangling to inspections that took place in 2016. Here, we can
use the pipe function again in order to apply the same reshaping to both the inspec‐
tions and violations dataframes:

def subset_2016(df):
 return df.query('year == 2016')

vio2016 = viol.pipe(subset_2016)
ins2016 = insp.pipe(subset_2016)

ins2016.head(5)

 business_id score date type timestamp year
0 19 94 20160513 routine 2016-05-13 2016
3 24 98 20161005 routine 2016-10-05 2016
4 24 96 20160311 routine 2016-03-11 2016
6 45 78 20160104 routine 2016-01-04 2016
9 45 84 20160614 routine 2016-06-14 2016

In Chapter 8, we found that business_id and timestamp together uniquely identify
the inspections (with a couple of exceptions). We also see here that restaurants can
receive multiple inspections in a year—business #24 had two inspections in 2016, one
in March and another in October.

Next, let’s look at a few records from the violations table:

vio2016.head(5)

Example: Wrangling Restaurant Safety Violations | 187

 business_id date description timestamp year
2 19 20160513 Unapproved or unmaintained equipment or utensi... 2016-05-13 2016
3 19 20160513 Unclean or degraded floors walls or ceilings ... 2016-05-13 2016
4 19 20160513 Food safety certificate or food handler card n... 2016-05-13 2016
6 24 20161005 Unclean or degraded floors walls or ceilings ... 2016-10-05 2016
7 24 20160311 Unclean or degraded floors walls or ceilings ... 2016-03-11 2016

Notice that the first few records are for the same restaurant. If we want to bring viola‐
tion information into the inspections table, we need to address the different granular‐
ities of these tables. One approach is to aggregate the violations in some way. We
discuss this next.

Aggregating Violations
One simple aggregation of the violations is to count them and add that count to the
inspections data table. To find the number of violations at an inspection, we can
group the violations by business_id and timestamp and then find the size of each
group. Essentially, this grouping changes the granularity of violations to an inspection
level:

num_vios = (vio2016
 .groupby(['business_id', 'timestamp'])
 .size()
 .reset_index()
 .rename(columns={0: 'num_vio'}));
num_vios.head(3)

 business_id timestamp num_vio
0 19 2016-05-13 3
1 24 2016-03-11 2
2 24 2016-10-05 1

Now we need to merge this new information with ins2016. Specifically, we want to
left-join ins2016 with num_vios because there could be inspections that do not have
any violations and we don’t want to lose them:

def left_join_vios(ins):
 return ins.merge(num_vios, on=['business_id', 'timestamp'], how='left')

ins_and_num_vios = ins2016.pipe(left_join_vios)
ins_and_num_vios

188 | Chapter 9: Wrangling Dataframes

 business_id score date type timestamp year num_vio
0 19 94 20160513 routine 2016-05-13 2016 3.0
1 24 98 20161005 routine 2016-10-05 2016 1.0
2 24 96 20160311 routine 2016-03-11 2016 2.0
...
5440 90096 91 20161229 routine 2016-12-29 2016 2.0
5441 90268 100 20161229 routine 2016-12-29 2016 NaN
5442 90269 100 20161229 routine 2016-12-29 2016 NaN

5443 rows × 7 columns

When there are no violations at an inspection, the feature num_vio has a missing
value (NaN). We can check how many values are missing:

ins_and_num_vios['num_vio'].isnull().sum()

833

About 15% of restaurant inspections in 2016 had no safety violations recorded. We
can correct these missing values by setting them to 0 if the restaurant had a perfect
safety score of 100. This is an example of deductive imputation since we’re using
domain knowledge to fill in missing values:

def zero_vios_for_perfect_scores(df):
 df = df.copy()
 df.loc[df['score'] == 100, 'num_vio'] = 0
 return df

ins_and_num_vios = (ins2016.pipe(left_join_vios)
 .pipe(zero_vios_for_perfect_scores))

We can count the number of inspections with missing violation counts again:

ins_and_num_vios['num_vio'].isnull().sum()

65

We have corrected a large number of missing values. With further investigation, we
find that some of the businesses have inspection dates that are close but don’t quite
match. We could do a fuzzy match where inspections with dates that are only one or
two days apart are matched. But for now, we just leave them as NaN.

Let’s examine the relationship between the number of violations and the inspection
score:

Example: Wrangling Restaurant Safety Violations | 189

As we might expect, there is a negative relationship between the inspection score and
the number of violations. We can also see variability in scores. The variability in
scores grows with the number of violations. It appears that some violations are more
serious than others and have a greater impact on the score. We extract information
about the kinds of violations next.

Extracting Information from Violation Descriptions
We saw earlier that the feature description in the violations dataframe has a lot of
text, including information in square brackets about when the violation was correc‐
ted. We can tally the descriptions and examine the most common violations:

display_df(vio2016['description'].value_counts().head(15).to_frame(), rows=15)

 description
Unclean or degraded floors walls or ceilings 161
Unapproved or unmaintained equipment or utensils 99
Moderate risk food holding temperature 95
Inadequate and inaccessible handwashing facilities 93
Inadequately cleaned or sanitized food contact surfaces 92
Improper food storage 81
Wiping cloths not clean or properly stored or inadequate sanitizer 71
Food safety certificate or food handler card not available 64
Moderate risk vermin infestation 58
Foods not protected from contamination 56
Unclean nonfood contact surfaces 54
Inadequate food safety knowledge or lack of certified food safety manager 52
Permit license or inspection report not posted 41
Improper storage of equipment utensils or linens 41
Low risk vermin infestation 34

190 | Chapter 9: Wrangling Dataframes

Reading through these wordy descriptions, we see that some are related to the cleanli‐
ness of facilities, others to food storage, and still others to cleanliness of the staff.

Since there are many types of violations, we can try to group them together into
larger categories. One way to do this is to create a simple boolean flag depending on
whether the text contains a special term, like vermin, hand, or high risk.

With this approach, we create eight new features for different categories of violations.
Don’t worry about the particular details of the code for now—this code uses regular
expressions, covered in Chapter 13. The important idea is that this code creates fea‐
tures containing True or False based on whether the violation description contains
specific words:

def make_vio_categories(vio):
 def has(term):
 return vio['description'].str.contains(term)

 return vio[['business_id', 'timestamp']].assign(
 high_risk = has(r"high risk"),
 clean = has(r"clean|sanit"),
 food_surface = (has(r"surface") & has(r"\Wfood")),
 vermin = has(r"vermin"),
 storage = has(r"thaw|cool|therm|storage"),
 permit = has(r"certif|permit"),
 non_food_surface = has(r"wall|ceiling|floor|surface"),
 human = has(r"hand|glove|hair|nail"),
)

vio_ctg = vio2016.pipe(make_vio_categories)
vio_ctg

 business_id timestamp high_risk clean ... storage permit non_food_surface human
2 19 2016-05-13 False False ... False False False False
3 19 2016-05-13 False True ... False False True False
4 19 2016-05-13 False False ... False True False True
...
38147 89900 2016-12-06 False False ... False False False False
38220 90096 2016-12-29 False False ... False False False False
38221 90096 2016-12-29 False True ... False False True False

15624 rows × 10 columns

Now that we have these new features in vio_ctg, we can find out whether certain vio‐
lation categories are more impactful than others. For example, are restaurant scores
impacted more for vermin-related violations than permit-related violations?

Example: Wrangling Restaurant Safety Violations | 191

To do this, we want to first count up the violations per business. Then we can merge
this information with the inspection information. First, let’s sum the number of viola‐
tions for each business:

vio_counts = vio_ctg.groupby(['business_id', 'timestamp']).sum().reset_index()
vio_counts

 business_id timestamp high_risk clean ... storage permit non_food_surface human
0 19 2016-05-13 0 1 ... 0 1 1 1
1 24 2016-03-11 0 2 ... 0 0 2 0
2 24 2016-10-05 0 1 ... 0 0 1 0
...
4803 89790 2016-11-29 0 0 ... 0 0 0 1
4804 89900 2016-12-06 0 0 ... 0 0 0 0
4805 90096 2016-12-29 0 1 ... 0 0 1 0

4806 rows × 10 columns

Once again, we use a left join to merge these new features into the inspection-level
dataframe. And for the special case of a score of 100, we set all of the new features
to 0:

feature_names = ['high_risk', 'clean', 'food_surface', 'vermin',
 'storage', 'permit', 'non_food_surface', 'human']
def left_join_features(ins):
 return (ins[['business_id', 'timestamp', 'score']]
 .merge(vio_counts, on=['business_id', 'timestamp'], how='left'))

def zero_features_for_perfect_scores(ins):
 ins = ins.copy()
 ins.loc[ins['score'] == 100, feature_names] = 0
 return ins

ins_and_vios = (ins2016.pipe(left_join_features)
 .pipe(zero_features_for_perfect_scores))
ins_and_vios.head(3)

 business_id timestamp score high_risk ... storage permit non_food_surface human

0 19 2016-05-13 94 0.0 ... 0.0 1.0 1.0 1.0

1 24 2016-10-05 98 0.0 ... 0.0 0.0 1.0 0.0

2 24 2016-03-11 96 0.0 ... 0.0 0.0 2.0 0.0

3 rows × 11 columns

To see how each violation category relates to the score, we can make a collection of
box plots that compare the score distributions with and without each violation. Since

192 | Chapter 9: Wrangling Dataframes

our focus here is on the data’s patterns, not the visualization code, we hide the code
(you can see it larger online):

Summary
Data wrangling is an essential part of data analysis. Without it, we risk overlooking
problems in data that can have major consequences for our future analysis. This
chapter covered several important data wrangling steps that we use in nearly every
analysis.

We described what to look for in a dataset after we’ve read it into a dataframe. Quality
checks help us spot problems in the data. To find bad and missing values, we can take
many approaches:

• Check summary statistics, distributions, and value counts. Chapter 10 provides
examples and guidance on how to go about checking the quality of your data
using visualizations and summary statistics. We briefly mentioned a few
approaches here. A table of counts of unique values in a feature can uncover
unexpected encodings and lopsided distributions, where one option is a rare
occurrence. Percentiles can be helpful in revealing the proportion of values with
unusually high (or low) values.

• Use logical expressions to identify records with values that are out of range or
relationships that are out of whack. Simply computing the number of records
that do not pass the quality check can quickly reveal the size of the problem.

• Examine the whole record for those records with problematic values in a particu‐
lar feature. At times, an entire record is garbled when, for example, a comma is
misplaced in a CSV-formatted file. Or the record might represent an unusual

Summary | 193

https://oreil.ly/go29H

situation (such as ranches being included in data on house sales), and you will
need to decide whether it should be included in your analysis.

• Refer to an external source to figure out if there’s a reason for the anomaly.

The biggest takeaway for this chapter is to be curious about your data. Look for clues
that can reveal the quality of your data. The more evidence you find, the more confi‐
dence you will have in your findings. And if you uncover problems, dig deeper. Try to
understand and explain any unusual phenomena. A good understanding of your data
will help you assess whether an issue that you found is small and can be ignored or
corrected, or whether it poses a serious limitation on the usefulness of your data. This
curiosity mindset is closely connected to exploratory data analysis, the topic of the
next chapter.

194 | Chapter 9: Wrangling Dataframes

CHAPTER 10

Exploratory Data Analysis

More than 50 years ago, John Tukey avidly promoted an alternative type of data anal‐
ysis that broke from the formal world of confidence intervals, hypothesis tests, and
modeling. Today Tukey’s exploratory data analysis (EDA) is widely practiced. Tukey
describes EDA as a philosophical approach to working with data:

Exploratory data analysis is actively incisive, rather than passively descriptive, with real
emphasis on the discovery of the unexpected.

As a data scientist, you will want to use EDA in every stage of the data lifecycle, from
checking the quality of your data to preparing for formal modeling to confirming that
your model is reasonable. Indeed, the work described in Chapter 9 to clean and trans‐
form the data relied heavily on EDA to guide our quality checks and transformations.

In EDA, we enter a process of discovery, continually asking questions and diving into
uncharted territory to explore ideas. We use plots to uncover features of the data,
examine distributions of values, and reveal relationships that cannot be detected from
simple numerical summaries. This exploration involves transforming, visualizing,
and summarizing data to build and confirm our understanding, identify and address
potential issues with the data, and inform subsequent analysis.

EDA is fun! But it takes practice. One of the best ways to learn how to carry out EDA
is to learn from others as they describe their thought process while they explore data,
and we attempt to reveal EDA thinking in our examples and case studies in this book.

EDA can provide valuable insights, but you need to be cautious about the conclusions
that you draw. It is important to recognize that EDA can bias your analysis. EDA is a
winnowing process and a decision-making process that can impact the replicability of
your later, model-based findings. With enough data and if you look hard, you often
can dredge up something interesting that is entirely spurious.

195

https://oreil.ly/Himzi
https://oreil.ly/UO9F8

The role of EDA in the scientific reproducibility crisis has been noted, and data scien‐
tists have cautioned against overdoing it. For example, Gelman and Loken note:

Even in settings where a single analysis has been carried out on the given data, the
issue of multiple comparisons [data dredging] emerges because different choices about
combining variables, inclusion and exclusion of cases, transformations of variables,
tests for interactions in the absence of main effects, and many other steps in the analy‐
sis could well have occurred with different data.

It’s a good practice to report and provide the code from your EDA so that others are
aware of the choices you made and the paths you took in learning about your data.

The topic of visualization is split across three chapters. In Chapter 9, we used plots to
inform us in our data wrangling. The plots there were basic and the findings straight‐
forward. We didn’t dwell on interpretations and choices of plots. In this chapter, we
spend more time learning how to choose the right plot and interpret it. We usually
take the default parameter settings of the plotting functions since our goal is to make
plots quickly as we carry out EDA. In Chapter 11, we’ll provide guidelines for making
effective and informative plots and give advice on how to make our visual argument
clear and compelling.

According to Tukey, visualization is central to EDA:

The greatest gains from data come from surprises… The unexpected is best brought to
our attention by pictures.

To make these pictures, we need to choose an appropriate type of plot, and our choice
depends on the kinds of data that have been collected. This mapping between feature
type and plot choice is the topic of the next section. From there, we go on to describe
how to “read” a plot, what to look for, and how to interpret what you see. We first
discuss what to look for in a one-feature plot, then focus on reading relationships
between two features, and finally describe plots for three or more features. After we
have introduced the visualization tools for EDA, we provide guidelines for carrying
out an EDA and then walk through an example as we follow these guidelines.

Feature Types
Before making an exploratory plot, or any plot for that matter, it’s a good idea to
examine the feature (or features) and decide on its feature type. (Sometimes we refer
to a feature as a variable and its type as variable type.) Although there are multiple
ways of categorizing feature types, in this book we consider three basic ones. Ordinal
and nominal data are subtypes of categorical data. Another name for categorical data
is qualitative. In contrast, we also have quantitative features:

196 | Chapter 10: Exploratory Data Analysis

https://doi.org/10.1511/2014.111.460
https://oreil.ly/AIWW5

Nominal
A feature that represents “named” categories, where the categories do not have a
natural ordering, is called nominal. Examples include political party affiliation
(Democrat, Republican, Green, other); dog type (herding, hound, non-sporting,
sporting, terrier, toy, working); and computer operating system (Windows,
macOS, Linux).

Ordinal
Measurements that represent ordered categories are called ordinal. Examples of
ordinal features are T-shirt size (small, medium, large), Likert-scale response
(disagree, neutral, agree), and level of education (high school, college, graduate
school). It is important to note that with an ordinal feature, the difference
between, say, small and medium need not be the same as the difference between
medium and large. Also, the differences between consecutive categories may not
even be quantifiable. Think of the number of stars in a restaurant review and
what one star means in comparison to two stars.

Quantitative
Data that represent numeric measurements or quantities are called quantitative.
Examples include height measured to the nearest cm, price reported in USD, and
distance measured to the nearest km. Quantitative features can be further divided
into discrete, meaning that only a few values of the feature are possible, and con‐
tinuous, meaning that the quantity could in principle be measured to arbitrary
precision. The number of siblings in a family takes on a discrete set of values
(such as 0, 1, 2, …, 8). In contrast, height can theoretically be reported to any
number of decimal places, so we consider it continuous. There is no hard and fast
rule to determine whether a quantity is discrete or continuous. In some cases, it
can be a judgment call, and in others, we may want to purposefully consider a
continuous feature to be discrete.

A feature type is not the same thing as a data storage type. Each column in a pan
das DataFrame has its own storage type. These types can be integer, floating point,
boolean, date-time format, category, and object (strings of varying length are stored
as objects in Python with pointers to the strings). We use the term feature type to refer
to a conceptual notion of the information and the term storage type to refer to the
representation of the information in the computer.

A feature stored as an integer can represent nominal data, strings can be quantitative
(like "\$100.00"), and, in practice, boolean values often represent nominal features
that have only two possible values.

Feature Types | 197

pandas calls the storage type dtype, which is short for data type.
We refrain from using the term data type here because it can be
confused with both storage type and feature type.

In order to determine a feature type, we often need to consult a dataset’s data dictio‐
nary or codebook. A data dictionary is a document included with the data that
describes what each column in the data table represents. In the following example, we
take a look at the storage and feature types of the columns in a dataframe about vari‐
ous dog breeds, and we find that the storage type is often not a good indicator of the
kind of information contained in a field.

Example: Dog Breeds
We use the American Kennel Club (AKC) data on registered dog breeds to introduce
the various concepts related to EDA. The AKC, a nonprofit that was founded in 1884,
has the stated mission to “advance the study, breeding, exhibiting, running and main‐
tenance of purebred dogs.” The AKC organizes events like the National Champion‐
ship, Agility Invitational, and Obedience Classic, and mixed-breed dogs are welcome
to participate in most events. The Information Is Beautiful website provides a dataset
with information from the AKC on 172 breeds. Its visualization, Best in Show, incor‐
porates many features of the breeds and is fun to look at.

The AKC dataset contains several different kinds of features, and we have extracted a
handful of them that show a variety of types of information. These features include
the name of the breed; its longevity, weight, and height; and other information such
as its suitability for children and the number of repetitions needed to learn a new
trick. Each record in the dataset is a breed of dog, and the information provided is
meant to be typical of that breed. Let’s read the data into a dataframe:

dogs = pd.read_csv('data/akc.csv')
dogs

 breed group score longevity ... size weight height repetition
0 Border Collie herding 3.64 12.52 ... medium NaN 51.0 <5
1 Border Terrier terrier 3.61 14.00 ... small 6.0 NaN 15-25
2 Brittany sporting 3.54 12.92 ... medium 16.0 48.0 5-15
...
169 Wire Fox Terrier terrier NaN 13.17 ... small 8.0 38.0 25-40
170 Wirehaired Pointing Griffon sporting NaN 8.80 ... medium NaN 56.0 25-40
171 Xoloitzcuintli non-sporting NaN NaN ... medium NaN 42.0 NaN

172 rows × 12 columns

198 | Chapter 10: Exploratory Data Analysis

https://www.akc.org
https://informationisbeautiful.net
https://oreil.ly/amksD

A cursory glance at the table shows us that breed, group, and size appear to be strings,
and the other columns are numbers. The summary of the dataframe, shown here,
provides the index, name, count of non-null values, and dtype for each column:

dogs.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 172 entries, 0 to 171
Data columns (total 12 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 breed 172 non-null object
 1 group 172 non-null object
 2 score 87 non-null float64
 3 longevity 135 non-null float64
 4 ailments 148 non-null float64
 5 purchase_price 146 non-null float64
 6 grooming 112 non-null float64
 7 children 112 non-null float64
 8 size 172 non-null object
 9 weight 86 non-null float64
 10 height 159 non-null float64
 11 repetition 132 non-null object
dtypes: float64(8), object(4)
memory usage: 16.2+ KB

Several columns of this dataframe have a numeric computational type, as signified by
float64, which means that the column can contain numbers other than integers. We
also confirm that pandas encodes the string columns as the object dtype, rather than
a string dtype. Notice that we guessed incorrectly that repetition is quantitative.
Looking a bit more carefully at the data table, we see that repetition contains string
values for ranges, such as "<5", "15-25", and "25-40", so this feature is ordinal.

In computer architecture, a floating-point number, or “float” for
short, refers to a number that can have a decimal component. We
won’t go in depth into computer architecture in this book, but we
will point it out when it affects terminology, as in this case. The
dtype float64 says that the column contains decimal numbers that
each take up 64 bits of space when stored in computer memory.
Additionally, pandas uses optimized storage types for numeric
data, like float64 or int64. However, it doesn’t have optimizations
for Python objects like strings, dictionaries, or sets, so these are all
stored as the object dtype. This means that the storage type is
ambiguous, but in most settings we know whether object columns
contain strings or some other Python type.

Feature Types | 199

Looking at the column storage types, we might guess ailments and children are
quantitative features because they are stored as float64 dtypes. But let’s tally their
unique values:

display_df(dogs['ailments'].value_counts(), rows=8)

ailments
0.0 61
1.0 42
2.0 24
4.0 10
3.0 6
5.0 3
9.0 1
8.0 1
Name: count, dtype: int64

dogs['children'].value_counts()

children
1.0 67
2.0 35
3.0 10
Name: count, dtype: int64

Both ailments and children only take on a few integer values. What does a value of
3.0 for children or 9.0 for ailments mean? We need more information to figure
this out. The name of the column and how the information is stored in the dataframe
is not enough. Instead, we consult the data dictionary shown in Table 10-1.

Table 10-1. AKC dog breed codebook

Feature Description
breed Dog breed, e.g., Border Collie, Dalmatian, Vizsla

group American Kennel Club grouping (herding, hound, non-sporting, sporting, terrier, toy, working)

score AKC score

longevity Typical lifetime (years)

ailments Number of serious genetic ailments

purchase_price Average purchase price from puppyfind.com

grooming Grooming required once every: 1 = day, 2 = week, 3 = few weeks

children Suitability for children: 1 = high, 2 = medium, 3 = low

size Size: small, medium, large

weight Typical weight (kg)

height Typical height from the shoulder (cm)

repetition Number of repetitions to understand a new command: <5, 5–15, 15–25, 25–40, 40–80, >80

200 | Chapter 10: Exploratory Data Analysis

http://puppyfind.com

Although the data dictionary does not explicitly specify the feature types, the descrip‐
tion is enough for us to figure out that the feature children represents the suitability
of the breed for children, and a value of 1.0 corresponds to “high” suitability. We also
find that the feature ailments is a count of the number of serious genetic ailments
that dogs of this breed tend to have. Based on the codebook, we treat children as a
categorical feature, even though it is stored as a floating-point number, and since low
< medium < high, the feature is ordinal. Since ailments is a count, we treat it as a
quantitative (numeric) type, and for some analyses we further define it as discrete
because there are only a few possible values that ailments can take on.

The codebook also confirms that the features score, longevity, purchase_price,
weight, and height are quantitative. The idea here is that numeric features have val‐
ues that can be compared through differences. It makes sense to say that chihuahuas
typically live about four years longer than dachshunds (16.5 versus 12.6 years).
Another check is whether it makes sense to compare ratios of values: a dachshund is
usually about five times heavier than a chihuahua (11 kg versus 2 kg). All of these
quantitative features are continuous; only ailments is discrete.

The data dictionary descriptions for breed, group, size, and repetition suggest that
these features are qualitative. Each variable has different, and yet commonly found,
characteristics that are worth exploring a bit more. We do this by examining the
counts of each unique value for the various features. We begin with breed:

dogs['breed'].value_counts()

breed
Border Collie 1
Great Pyrenees 1
English Foxhound 1
 ..
Saluki 1
Giant Schnauzer 1
Xoloitzcuintli 1
Name: count, Length: 172, dtype: int64

The breed feature has 172 unique values—that’s the same as the number of records in
the dataframe—so we can think of breed as the primary key for the data table. By
design, each dog breed has one record, and this breed feature determines the dataset’s
granularity. Although breed is also considered a nominal feature, it doesn’t really
make sense to analyze it. We do want to confirm that all values are unique and clean,
but otherwise we would only use it to, say, label unusual values in a plot.

Next, we examine the feature group:

dogs['group'].value_counts()

group
terrier 28

Feature Types | 201

sporting 28
working 27
hound 26
herding 25
toy 19
non-sporting 19
Name: count, dtype: int64

This feature has seven unique values. Since a dog breed labeled as “sporting” and
another considered to be “toy” differ from each other in several ways, the categories
cannot be easily reduced to an ordering. So we consider group a nominal feature.
Nominal features do not provide meaning in even the direction of the differences.

Next, we examine the unique values and their counts for size:

dogs['size'].value_counts()

size
medium 60
small 58
large 54
Name: count, dtype: int64

The size feature has a natural ordering: small < medium < large, so it is ordinal. We
don’t know how the category “small” is determined, but we do know that a small
breed is in some sense smaller than a medium-sized breed, which is smaller than a
large one. We have an ordering, but differences and ratios don’t make sense conceptu‐
ally for this feature.

The repetition feature is an example of a quantitative variable that has been col‐
lapsed into categories to become ordinal. The codebook tells us that repetition is
the number of times a new command needs to be repeated before the dog under‐
stands it:

dogs['repetition'].value_counts()

repetition
25-40 39
15-25 29
40-80 22
5-15 21
80-100 11
<5 10
Name: count, dtype: int64

The numeric values have been lumped together as <5, 5-15, 15-25, 25-40, 40-80,
80-100, and notice that these categories have different widths. The first has 5 repeti‐
tions, while others are 10, 15, and 40 repetitions wide. The ordering is clear, but the
gaps from one category to the next are not of the same magnitude.

202 | Chapter 10: Exploratory Data Analysis

Now that we have double-checked the values in the variables against the descriptions
in the codebook, we can augment the data dictionary to include this additional infor‐
mation about the feature types. Our revised dictionary appears in Table 10-2.

Table 10-2. Revised AKC dog breed codebook

Feature Description Feature type Storage type
breed Dog breed, e.g., Border Collie, Dalmatian, Vizsla primary key string

group AKC group (herding, hound, non-sporting, sporting, terrier,
toy, working)

qualitative - nominal string

score AKC score quantitative floating point

longevity Typical lifetime (years) quantitative floating point

ailments Number of serious genetic ailments (0, 1, …, 9) quantitative - discrete floating point

purchase_price Average purchase price from puppyfind.com quantitative floating point

grooming Groom once every: 1 = day, 2 = week, 3 = few weeks qualitative - ordinal floating point

children Suitability for children: 1 = high, 2 = medium, 3 = low qualitative - ordinal floating point

size Size: small, medium, large qualitative - ordinal string

weight Typical weight (kg) quantitative floating point

height Typical height from the shoulder (cm) quantitative floating point

repetition Number of repetitions to understand a new command: <5,
5–15, 15–25, 25–40, 40–80, 80–100

qualitative - ordinal string

This sharper understanding of the feature types of the AKC data helps us make qual‐
ity checks and transformations. We discussed transformations in Chapter 9, but there
are a few additional transformations that were not covered. These pertain to cate‐
gories of qualitative features, and we describe them next.

Transforming Qualitative Features
Whether a feature is nominal or ordinal, we may find it useful to relabel categories so
that they are more informative, collapse categories to simplify a visualization, and
even convert a numeric feature to ordinal to focus on particular transition points. We
explain when we may want to make each of these transformations and give examples.

Relabel categories
Summary statistics, like the mean and the median, make sense for quantitative data,
but typically not for qualitative data. For example, the average price for toy breeds
makes sense to calculate ($687), but the “average” breed suitability for children
doesn’t. However, pandas will happily compute the mean of the values in the
children column if we ask it to:

Don't use this value in actual data analysis!
dogs["children"].mean()

Feature Types | 203

http://puppyfind.com

1.4910714285714286

Instead, we want to consider the distribution of 1s, 2s, and 3s of children.

The key difference between storage types and feature types is that
storage types say what operations we can write code to compute,
while feature types say what operations make sense for the data.

We can transform children by replacing the numbers with their string descriptions.
Changing 1, 2, and 3 into high, medium, and low makes it easier to recognize that
children is categorical. With strings, we would not be tempted to compute a mean,
the categories would be connected to their meaning, and labels for plots would have
reasonable values by default. For example, let’s focus on just the toy breeds and make
a bar plot of suitability for children. First, we create a new column with the categories
of suitability as strings:

kids = {1:"high", 2:"medium", 3:"low"}
dogs = dogs.assign(kids=dogs['children'].replace(kids))

dogs

 breed group score longevity ... weight height repetition kids
0 Border Collie herding 3.64 12.52 ... NaN 51.0 <5 low
1 Border Terrier terrier 3.61 14.00 ... 6.0 NaN 15-25 high
2 Brittany sporting 3.54 12.92 ... 16.0 48.0 5-15 medium
...
169 Wire Fox Terrier terrier NaN 13.17 ... 8.0 38.0 25-40 NaN
170 Wirehaired Pointing Griffon sporting NaN 8.80 ... NaN 56.0 25-40 NaN
171 Xoloitzcuintli non-sporting NaN NaN ... NaN 42.0 NaN NaN

172 rows × 13 columns

Then we can make the bar plot of counts of each category of suitability among the toy
breeds:

toy_dogs = dogs.query('group == "toy"').groupby('kids').count().reset_index()
px.bar(toy_dogs, x='kids', y='breed', width=350, height=250,
 category_orders={"kids": ["low", "medium", "high"]},
 labels={"kids": "Suitability for children", "breed": "count"})

204 | Chapter 10: Exploratory Data Analysis

We do not always want to have categorical data represented by strings. Strings gener‐
ally take up more space to store, which can greatly increase the size of a dataset if it
contains many categorical features.

At times, a qualitative feature has many categories and we prefer a higher-level view
of the data, so we collapse categories.

Collapse categories

Let’s create a new column, called play, to represent the groups of dogs whose “pur‐
pose” is to play (or not). (This is a fictitious distinction used for demonstration pur‐
poses.) This category consists of the toy and non-sporting breeds. The new feature,
play, is a transformation of the feature group that collapses categories: toy and non-
sporting are combined into one category, and the remaining categories are placed in a
second, non-play category. The boolean (bool) storage type is useful to indicate the
presence or absence of this characteristic:

with_play = dogs.assign(play=(dogs["group"] == "toy") |
 (dogs["group"] == "non-sporting"))

Representing a two-category qualitative feature as a boolean has a few advantages.
For example, the mean of play makes sense because it returns the fraction of True
values. When booleans are used for numeric calculations, True becomes 1 and False
becomes 0:

with_play['play'].mean()

0.22093023255813954

This storage type gives us a shortcut to compute counts and averages of boolean val‐
ues. In Chapter 15, we’ll see that it’s also a handy encoding for modeling.

Feature Types | 205

There are also times, like when a discrete quantitative feature has a long tail, that we
want to truncate the higher values, which turns the quantitative feature into an ordi‐
nal. We describe this next.

Convert quantitative to ordinal
Finally, another transformation that we sometimes find useful is to convert numeric
values into categories. For example, we might collapse the values in ailments into
categories: 0, 1, 2, 3, 4+. In other words, we turn ailments from a quantitative feature
into an ordinal feature with the mapping 0→0, 1→1, 2→2, 3→3, and any value 4 or
larger→4+. We might want to make this transformation because few breeds have
more than three genetic ailments. This simplification can be clearer and adequate for
an investigation.

As of this writing (late 2022), pandas also implements a category
dtype that is designed to work with qualitative data. However, this
storage type is not yet widely adopted by the visualization and
modeling libraries, which limits its usefulness. For that reason, we
do not transform our qualitative variables into the category dtype.
We expect that future readers may want to use the category dtype
as more libraries support it.

When we convert a quantitative feature to ordinal, we lose information. We can’t go
back. That is, if we know the number of ailments for a breed is four or more, we can’t
re-create the actual numeric value. The same thing happens when we collapse cate‐
gories. For this reason, it’s a good practice to keep the original feature. If we need to
check our work or change categories, we can document and re-create our steps.

In general, the feature type helps us figure out what kind of plot is most appropriate.
We discuss the mapping between feature type and plots next.

The Importance of Feature Types
Feature types guide us in our data analysis. They help specify the operations, visuali‐
zations, and models we can meaningfully apply to the data. Table 10-3 matches the
feature type(s) to the various kinds of plots that are typically good options. Whether
the variable(s) are quantitative or qualitative generally determines the set of viable
plots to make, although there are exceptions. Other factors that enter into the deci‐
sion are the number of observations and whether the feature takes on only a few dis‐
tinct values. For example, we might make a bar chart, rather than a histogram, for a
discrete quantitative variable.

206 | Chapter 10: Exploratory Data Analysis

Table 10-3. Mapping feature types to plots

Feature type Dimension Plot
Quantitative One feature Rug plot, histogram, density curve, box plot, violin plot

Qualitative One feature Bar plot, dot plot, line plot, pie chart

Quantitative Two features Scatterplot, smooth curve, contour plot, heat map, quantile-quantile plot

Qualitative Two features Side-by-side bar plots, mosaic plot, overlaid lines

Mixed Two features Overlaid density curves, side-by-side box plots, overlaid smooth curves, quantile-quantile plot

The feature type also helps us decide the kind of summary statistics to calculate. With
qualitative data, we usually don’t compute means or standard deviations, and instead
compute the count, fraction, or percentage of records in each category. With a quanti‐
tative feature, we compute the mean or median as a measure of center, and, respec‐
tively, the standard deviation or inner quartile range (75th percentile to 25th
percentile) as a measure of spread. In addition to the quartiles, we may find other
percentiles informative.

The nth percentile is that value q such that n% of the data values fall
at or below it. The value q might not be unique, and there are sev‐
eral approaches to select a unique value from the possibilities. With
enough data, there should be little difference between these
definitions.
To compute percentiles in Python, we prefer using:

np.percentile(data, method='lower')

When exploring data, we need to know how to interpret the shapes that our plots
reveal. The next three sections give guidance with this interpretation. We also intro‐
duce many of the types of plots listed in Table 10-3 through the examples. Others are
introduced in Chapter 11.

What to Look For in a Distribution
Visual displays of a feature can help us see patterns in observations; they are often
much better than direct examination of the numbers or strings themselves. The sim‐
ple rug plot locates each observation as a “yarn” in a “rug” along an axis. The rug plot
can be useful when we have a handful of observations, but it soon gets difficult to dis‐
tinguish high-density (most-populated) regions with, say, even 100 values. The fol‐
lowing figure shows a rug plot with about 150 longevity values for dog breeds along
the top of a histogram:

px.histogram(dogs, x="longevity", marginal="rug", nbins=20,
 histnorm='percent', width=350, height=250,
 labels={'longevity':'Typical lifespan (yr)'})

What to Look For in a Distribution | 207

Although we can see an unusually large value that’s greater than 16 in the rug plot, it’s
hard to compare the density of yarns in the other regions. Instead, the histogram
gives a much better sense of the density of observations for various longevity values.
Similarly, the density curve shown in the following figure gives a picture of the regions
of high and low density:

In both the histogram and density curve, we can see that the distribution of longevity
is asymmetric. There is one main mode around 12 years and a shoulder in the 9-
to-11-year range, meaning that while 12 is the most common longevity, many breeds
have a longevity one to three years shorter than 12. We also see a small secondary
mode around 7, and a few breeds with longevity as long as 14 to 16 years.

When interpreting a histogram or density curve, we examine the symmetry and
skewness of the distribution; the number, location, and size of high-frequency regions
(modes); the length of tails (often in comparison to a bell-shaped curve); gaps where

208 | Chapter 10: Exploratory Data Analysis

no values are observed; and unusually large or anomalous values. Figure 10-1 pro‐
vides a characterization of a distribution with several of these features. When we read
a distribution, we connect the features that we see in the plot to the quantity
measured.

Figure 10-1. Example density plot identifying qualities of a distribution based on its
shape

As another example, the distribution of the number of ailments in dog breeds appears
in the following histogram:

bins = [-0.5, 0.5, 1.5, 2.5, 3.5, 9.5]
g = sns.histplot(data=dogs, x="ailments", bins=bins, stat="density")
g.set(xlabel='Number of ailments', ylabel='density');

A value of 0 means this breed has no genetic ailments, 1 corresponds to one genetic
ailment, and so on. From the histogram, we see that the distribution of ailments is
unimodal with a peak at 0. We also see that the distribution is heavily skewed to the
right, with a long right tail indicating that few breeds have between four and nine
genetic ailments. Although quantitative, ailments is discrete because only a few

What to Look For in a Distribution | 209

integer values are possible. For this reason, we centered the bins on the integers so
that the bin from 1.5 to 2.5 contains only those breeds with two ailments. We also
made the rightmost bin wider. We lumped into one bin all of the breeds with four to
nine ailments. When bin counts are small, we use wider bins to further smooth the
distribution because we do not want to read too much into the fluctuations of small
numbers. In this case, none of the breeds have six or seven ailments, but some have
four, five, eight, or nine.

Next, we point out three key aspects of histograms and density curves: the y-axis
should be on a density scale, smoothing hides unimportant details, and histograms
are fundamentally different from bar plots. We describe each in turn:

Density in the y-axis
The y-axes in the histograms of longevity and ailments are both labeled “density.”
This label implies that the total area of the bars in the histogram equals 1. To
explain, we can think of the histogram as a skyline with tall buildings having
denser populations, and we find the fraction of observations in any bin from the
area of the rectangle. For example, the rectangle that runs from 3.5 to 9.5 in the
ailments histogram contains about 10% of the breeds: 6 (width) × 0.017 (height)
is roughly 0.10. If all of the bins are the same width, then the “skyline” will look
the same whether the y-axis represents counts or density. But changing the y-axis
to counts in this histogram would give a misleading picture of a very large rec‐
tangle in the right tail.

Smoothing
With a histogram we hide the details of individual yarns in a rug plot in order to
view the general features of the distribution. Smoothing refers to this process of
replacing sets of points with rectangles; we choose not to show every single point
in the dataset in order to reveal broader trends. We might want to smooth out
these points because this is a sample and we believe that other values near the
ones we observed are reasonable, and/or we want to focus on general structure
rather than individual observations. Without the rug, we can’t tell where the
points are in a bin. Smooth density curves, like the one we showed earlier for
longevity, also have the property that the total area under the curve sums to 1.
The density curve uses a smooth kernel function to spread out the individual
yarns and is sometimes referred to as a kernel density estimate (KDE).

Bar plot ≠ histogram
With qualitative data, the bar plot serves a similar role to the histogram. The bar
plot gives a visual presentation of the “popularity” or frequency of different
groups. However, we cannot interpret the shape of the bar plot in the same way
as a histogram. Tails and symmetry do not make sense in this setting. Also, the
frequency of a category is represented by the height of the bar, and the width car‐
ries no information. The two bar charts that follow display identical information

210 | Chapter 10: Exploratory Data Analysis

about the number of breeds in a category; the only difference is in the width of
the bars. In the extreme, the rightmost plot eliminates the bars entirely and rep‐
resents each count by a single dot. (Without the connecting lines, this figure is
called a dot plot.) Reading this line plot, we see that only a few breeds are unsuita‐
ble for children:

kid_counts = dogs.groupby(['kids']).count()
kid_counts = kid_counts.reindex(["high", "medium", "low"])

Now that we have covered how to examine distributions of single features, we turn to
the situation when we want to look at two features and how they relate.

What to Look For in a Relationship
When we investigate multiple variables, we examine the relationships between them,
in addition to their distributions. In this section, we consider pairs of features and
describe what to look for. Table 10-3 provides guidelines for the type of plot to make
based on the feature types. For two features, the combination of types (both quantita‐
tive, both qualitative, or a mix) matters. We consider each combination in turn.

Two Quantitative Features
If both features are quantitative, then we often examine their relationship with a scat‐
terplot. Each point in a scatterplot marks the position of a pair of values for an obser‐
vation. So we can think of a scatterplot as a two-dimensional rug plot.

With scatter plots, we look for linear and simple nonlinear relationships, and we
examine the strength of the relationships. We also look to see if a transformation of
one or the other or both features leads to a linear relationship.

The following scatterplot displays the weight and height of dog breeds (both are
quantitative):

What to Look For in a Relationship | 211

px.scatter(dogs, x='height', y='weight',
 marginal_x="rug", marginal_y="rug",
 labels={'height':'Height (cm)', 'weight':'Weight (kg)'},
 width=350, height=250)

We observe that dogs that are above average in height tend to be above average in
weight. This relationship appears nonlinear: the change in weight for taller dogs
grows faster than for shorter dogs. Indeed, that makes sense if we think of a dog as
basically shaped like a box: for similarly proportioned boxes, the weight of the con‐
tents of the box has a cubic relationship to its length.

It’s important to note that two univariate plots are missing information found in a
bivariate plot—information about how the two features vary together. Practically, his‐
tograms for two quantitative features do not contain enough information to create a
scatterplot of the features. We must exercise caution and not read too much into a
pair of univariate plots. Instead, we need to use one of the plots listed in the appropri‐
ate row of Table 10-3 (scatterplot, smooth curve, contour plot, heat map, quantile–
quantile plot) to get a sense of the relationship between two quantitative features.

When one feature is numeric and the other qualitative, Table 10-3 makes different
recommendations. We describe them next.

One Qualitative and One Quantitative Variable
To examine the relationship between a quantitative and a qualitative feature, we often
use the qualitative feature to divide the data into groups and compare the distribution
of the quantitative feature across these groups. For example, we can compare the dis‐
tribution of height for small, medium, and large dog breeds with three overlaid den‐
sity curves:

212 | Chapter 10: Exploratory Data Analysis

We see that the distribution of height for the small and medium breeds both appear
bimodal, with the left mode the larger in each group. Also, the small and medium
groups have a larger spread in height than the large group of breeds.

Side-by-side box plots offer a similar comparison of distributions across groups. The
box plot offers a simpler approach that can give a crude understanding of a distribu‐
tion. Likewise, violin plots sketch density curves along an axis for each group. The
curve is flipped to create a symmetric “violin” shape. The violin plot aims to bridge
the gap between the density curve and box plot. We create box plots (left) and violin
plots (right) for the height of breeds given the size labeling:

What to Look For in a Relationship | 213

The three box plots of height, one for each size of dog, make it clear that the size cate‐
gorization is based on height because there is almost no overlap in height ranges for
the groups. (This was not evident in the density curves due to the smoothing.) What
we don’t see in these box plots is the bimodality in the small and medium groups, but
we can still see that the large dogs have a narrower spread compared to the other two
groups.

Box plots (also known as box-and-whisker plots) give a visual summary of a few
important statistics of a distribution. The box denotes the 25th percentile, median,
and 75th percentile, the whiskers show the tails, and unusually large or small values
are also plotted. Box plots cannot reveal as much shape as a histogram or density
curve. They primarily show symmetry and skew, long/short tails, and unusually
large/small values (also known as outliers).

Figure 10-2 is a visual explanation of the parts of a box plot. Asymmetry is evident
from the median not being in the middle of the box, the sizes of the tails are shown
by the length of the whiskers, and outliers are shown by the points that appear
beyond the whiskers. The maximum is considered an outlier because it appears
beyond the whisker on the right.

Figure 10-2. Diagram of a box plot with the summary statistics labeled

When we examine the relationship between two qualitative features, our focus is on
proportions, as we explain next.

Two Qualitative Features
With two qualitative features, we often compare the distribution of one feature across
subgroups defined by the other feature. In effect, we hold one feature constant and
plot the distribution of the other one. To do this, we can use some of the same plots
we used to display the distribution of one qualitative feature, such as a line plot or bar

214 | Chapter 10: Exploratory Data Analysis

plot. As an example, let’s examine the relationship between the suitability of a breed
for children and the size of the breed.

To examine the relationship between these two qualitative features, we calculate three
sets of proportions (one each for low, medium, and high suitability). Within each
suitability category, we find the proportion of small, medium, and large dogs. These
proportions are displayed in the following table. Notice that each column sums to 1
(equivalent to 100%):

prop_table_t

kids high medium low

size
large 0.37 0.29 0.1
medium 0.36 0.34 0.2
small 0.27 0.37 0.7

The line plot that follows provides a visualization of these proportions. There is one
“line” (set of connected dots) for each suitability level. The connected dots give the
breakdown of size within a suitability category. We see that breeds with low suitability
for kids are primarily small:

fig = px.line(prop_table_t, y=prop_table_t.columns,
 x=prop_table_t.index, line_dash='kids',
 markers=True, width=500, height=250)

fig.update_layout(
 yaxis_title="proportion", xaxis_title="Size",
 legend_title="Suitability
for children"
)

What to Look For in a Relationship | 215

We can also present these proportions as a collection of side-by-side bar plots, as
shown here:

fig = px.bar(prop_table_t, y=prop_table_t.columns, x=prop_table_t.index,
 barmode='group', width=500, height=250)

fig.update_layout(
 yaxis_title="proportion", xaxis_title="Size",
 legend_title="Suitability
for children"
)

So far, we’ve covered visualizations that incorporate one or two features. In the next
section, we discuss visualizations that incorporate more than two features.

Comparisons in Multivariate Settings
When we examine a distribution or relationship, we often want to compare it across
subgroups of the data. This process of conditioning on additional factors often leads
to visualizations that involve three or more variables. In this section, we explain how
to read plots that are commonly used to visualize multiple variables.

As an example, let’s compare the relationship between height and longevity across
repetition categories. First, we collapse repetition (the typical number of times it takes
for a dog to learn a new command) from six categories into four: <15, 15–25, 25–40,
and 40+:

216 | Chapter 10: Exploratory Data Analysis

rep_replacements = {
 '80-100': '40+', '40-80': '40+',
 '<5': '<15', '5-15': '<15',
}
dogs = dogs.assign(
 repetition=dogs['repetition'].replace(rep_replacements))

Now each group has about 30 breeds in it, and having fewer categories makes it easier
to decipher relationships. These categories are conveyed by differently shaped sym‐
bols in a scatterplot:

px.scatter(dogs.dropna(subset=['repetition']), x='height', y='longevity',
 symbol='repetition', width=450, height=250,
 labels={'height':'Height (cm)',
 'longevity':'Typical lifespan (yr)',
 'repetition':'Repetition'},
)

This plot would be challenging to interpret if there were more levels within the
repetition feature.

Facet plots offer an alternative approach to display these three features:

px.scatter(dogs.dropna(subset=['repetition']),
 x='height', y='longevity', trendline='ols',
 facet_col='repetition', facet_col_wrap=2,
 labels={'height':'Height (cm)',
 'longevity':'Typical lifespan (yr)'})

Comparisons in Multivariate Settings | 217

Each of the four scatterplots shows the relationship between longevity and height for
a different range of repetitions. By separating the scatterplots, we can better assess
how the relationship between two quantitative features changes across the subgroups.
And we can more easily see the range of height and longevity for each repetition
range. We can see that the larger breeds tend to have shorter lifespans. Another inter‐
esting feature is that the lines are similar in slope, but the line for the 40+ repetitions
sits about 1.5 years below the others. Those breeds tend to live about 1.5 years less on
average than the other repetition categories, no matter the height.

Here we summarize the various plotting techniques for making comparisons when
we have three (or more) features:

Two quantitative and one qualitative
We demonstrated this case already with a scatterplot that varies the markers
according to the qualitative feature’s categories, or by the panels of scatterplots,
with one for each category.

Two qualitative and one quantitative feature
We have seen in the collections of box plots of height according to breed size that
we can compare the basic shape of a distribution across subgroups with side-by-
side box plots. When we have two or more qualitative features, we can organize
the box plots into groups according to one of the qualitative features.

218 | Chapter 10: Exploratory Data Analysis

Three quantitative features
We can use a similar technique when we plot two quantitative features and one
qualitative. This time, we convert one of the quantitative features into an ordinal
feature, where each category typically has roughly the same number of records.
Then we make faceted scatterplots of the other two features. We again look for
similarities in relationships across the facets.

Three qualitative features
When we examine relationships between qualitative features, we examine pro‐
portions of one feature within subgroups defined by another. In the previous sec‐
tion, the three line plots in one figure and the side-by-side bar plots both display
such comparisons. With three (or more) qualitative features, we can continue to
subdivide the data according to the combinations of levels of the features and
compare these proportions using line plots, dot plots, side-by-side bar charts,
and so forth. But these plots tend to get increasingly difficult to understand with
further subdivisions.

It’s a good practice to break down a visualization to see whether a
relationship changes for subgroups of the data determined by a
qualitative feature. This technique is called controlling for a feature.
You might get a surprise when, for example, a linear relationship in
a scatterplot that has an upward trend reverses to downward trends
in some or all facets of the scatterplot. This phenomenon is known
as Simpson’s paradox. The paradox can happen with qualitative fea‐
tures as well. A famous case occurred at Berkeley when the admis‐
sions to graduate school for men were higher than for women, but
when examined within each program the rates favored women.
The issue was that women were applying in greater numbers to
programs that had lower admission rates.

Comparisons that involve more than one categorical variable can quickly become
cumbersome as the number of possible combinations of categories grows. For exam‐
ple, there are 3 × 4 = 12 size-repetition combinations (if we had kept the original cat‐
egories for repetitions, we would have 18 combinations). Examining a distribution
across 12 subgroups can be difficult. Further, we come up against the problem of hav‐
ing too few observations in subgroups. Although there are nearly 200 rows in the
dogs dataframe, half of the size-repetition combinations have 10 or fewer observa‐
tions. (This is compounded by losing an observation when one feature has a missing
value.) This curse of dimensionality also arises when we compare relationships with
quantitative data. With just three quantitative variables, some of the scatterplots in a
facet plot can easily have too few observations to confirm the shape of the relation‐
ship between two variables for the subgroups.

Comparisons in Multivariate Settings | 219

https://oreil.ly/h9tMw

Now that we’ve seen practical examples of visualizations that are commonly used in
exploratory data analysis, we proceed to discuss some high-level guidelines for EDA.

Guidelines for Exploration
So far in this chapter, we have introduced the notion of feature types, seen how the
feature type can help to figure out what plot to make, and described how to read dis‐
tributions and relationships in a visualization. EDA relies on building these skills and
flexibly developing your understanding of the data.

You saw EDA in action in Chapter 9 when we developed checks for data quality and
feature transformations to improve their usefulness in data analysis. Following are
questions to guide you when making plots to explore the data:

• How are the values of Feature X distributed?
• How do Feature X and Feature Y relate to each other?
• Is the distribution of Feature X the same across subgroups defined by Feature Z?
• Are there any unusual observations in X? In the combination of (X,Y)? In X for a

subgroup of Z?

As you answer each of these questions, it is important to tie your answer back to the
features measured and the context. It is also important to adopt an active, inquisitive
approach to the investigation. To guide your explorations, ask yourself “what next”
and “so what” questions, such as the following:

• Do you have reason to expect that one group/observation might be different?
• Why might your finding about shape matter?
• What additional comparison might bring added value to the investigation?
• Are there any potentially important features to create comparisons with/against?

In this process, it’s important to step away from the computer at times to mull over
your work. You may want to read additional literature on the subject or go to an
expert in the field to discuss your findings. For example, there could be good reasons
for an unusual observation, and someone in the field can help clear up and provide
more background.

We put these guidelines into practice with a concrete example of EDA next.

220 | Chapter 10: Exploratory Data Analysis

Example: Sale Prices for Houses
In this final section, we carry out an exploratory analysis using the questions in the
previous section to direct our investigations. Although EDA typically begins in the
data wrangling stage, for demonstration purposes the data we work with here have
already been partially cleaned so that we can focus on exploring the features of inter‐
est. Note also that we do not discuss refining the visualizations in much detail; that
topic is covered in Chapter 11.

Our data were scraped from the San Francisco Chronicle (SFChron) website. The data
comprise a complete list of homes sold in the area from April 2003 to December
2008. Since we have no plans to generalize our findings beyond the time period and
the location and we are working with a census, the population matches the access
frame and the sample consists of the entire population.

As for granularity, each record represents a sale of a home in the SF Bay Area during
the specified time period. This means that if a home was sold twice during this time,
then there are two records in the table. And if a home in the Bay Area was not up for
sale during this time, then it does not appear in the dataset.

The data are in the dataframe sfh_df:

sfh_df

 city zip street price br lsqft bsqft timestamp
0 Alameda 94501.0 1001 Post Street 689000.0 4.0 4484.0 1982.0 2004-08-29
1 Alameda 94501.0 1001 Santa Clara Avenue 880000.0 7.0 5914.0 3866.0 2005-11-06
2 Alameda 94501.0 1001 Shoreline Drive \#102 393000.0 2.0 39353.0 1360.0 2003-09-21
...
521488 Windsor 95492.0 9998 Blasi Drive 392500.0 NaN 3111.0 NaN 2008-02-17
521489 Windsor 95492.0 9999 Blasi Drive 414000.0 NaN 2915.0 NaN 2008-02-17
521490 Windsor 95492.0 999 Gemini Drive 325000.0 3.0 7841.0 1092.0 2003-09-21

521491 rows × 8 columns

The dataset does not have an accompanying codebook, but we can determine the fea‐
tures and their storage types by inspection:

sfh_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 521491 entries, 0 to 521490
Data columns (total 8 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 city 521491 non-null object
 1 zip 521462 non-null float64
 2 street 521479 non-null object

Example: Sale Prices for Houses | 221

https://oreil.ly/tP9Xp

 3 price 521491 non-null float64
 4 br 421343 non-null float64
 5 lsqft 435207 non-null float64
 6 bsqft 444465 non-null float64
 7 timestamp 521491 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(5), object(2)
memory usage: 31.8+ MB

Based on the names of the fields, we expect the primary key to consist of some com‐
bination of city, zip code, street address, and date.

Sale price is our focus, so let’s begin by exploring its distribution. To develop your
intuition about distributions, make a guess about the shape of the distribution before
you start reading the next section. Don’t worry about the range of prices, just sketch
the general shape.

Understanding Price
It seems that a good guess for the shape of the distribution of sale price might be
highly skewed to the right with a few very expensive houses. The following summary
statistics confirm this skewness:

percs = [0, 25, 50, 75, 100]
prices = np.percentile(sfh_df['price'], percs, method='lower')
pd.DataFrame({'price': prices}, index=percs)

 price
0 22000.00
25 410000.00
50 555000.00
75 744000.00
100 20000000.00

The median is closer to the lower quartile than the upper quartile. Also, the maxi‐
mum is 40 times the median! We might wonder whether that $20M sale price is sim‐
ply an anomalous value or whether there are many houses that sold at such a high
price. To find out, we can zoom in on the right tail of the distribution and compute a
few high percentiles:

percs = [95, 97, 98, 99, 99.5, 99.9]
prices = np.percentile(sfh_df['price'], percs, method='lower')
pd.DataFrame({'price': prices}, index=percs)

222 | Chapter 10: Exploratory Data Analysis

 price
95.00 1295000.00
97.00 1508000.00
98.00 1707000.00
99.00 2110000.00
99.50 2600000.00
99.90 3950000.00

We see that 99.9% of the houses sold for under $4M, so the $20M sale is indeed a
rarity. Let’s examine the histogram of sale prices below $4M:

under_4m = sfh_df[sfh_df['price'] < 4_000_000].copy()

px.histogram(under_4m, x='price', nbins=50, width=350, height=250,
 labels={'price':'Sale price (USD)'})

Even without the top 0.1%, the distribution remains highly skewed to the right, with a
single mode around $500,000. Let’s plot the histogram of the log-transformed sale
price. The logarithm transformation often does a good job at converting a right-
skewed distribution into one that is more symmetric:

under_4m['log_price'] = np.log10(under_4m['price'])

px.histogram(under_4m, x='log_price', nbins=50, width=350, height=250,
 labels={'log_price':'Sale price (log10 USD)'})

Example: Sale Prices for Houses | 223

We see that the distribution of log-transformed sale price is roughly symmetric. Now
that we have an understanding of the distribution of sale price, let’s consider the so-
what questions posed in the previous section on EDA guidelines.

What Next?
We have a description of the shape of the sale price, but we need to consider why the
shape matters and look for comparison groups where distributions might differ.

Shape matters because models and statistics based on symmetric distributions tend to
have more robust and stable properties than highly skewed distributions. (We address
this issue more when we cover linear models in Chapter 15.) For this reason, we pri‐
marily work with the log-transformed sale price. And we might also choose to limit
our analysis to sale prices under $4M since the super-expensive houses may behave
quite differently.

As for possible comparisons to make, we look to the context. The housing market
rose rapidly during this time and then the bottom fell out of the market. So the distri‐
bution of sale price in, say, 2004 might be quite different than in 2008, right before the
crash. To explore this notion further, we can examine the behavior of prices over
time. Alternatively, we can fix time, and examine the relationships between price and
the other features of interest. Both approaches are potentially worthwhile.

We narrow our focus to one year (in Chapter 11 we look at the time dimension). We
reduce the data to sales made in 2004, so rising prices should have a limited impact
on the distributions and relationships that we examine. To limit the influence of the
very expensive and large houses, we also restrict the dataset to sales below $4M and
houses smaller than 12,000 ft2. This subset still contains large and expensive houses,
but not outrageously so. Later, we further narrow our exploration to a few cities of
interest:

224 | Chapter 10: Exploratory Data Analysis

def subset(df):
 return df.loc[(df['price'] < 4_000_000) &
 (df['bsqft'] < 12_000) &
 (df['timestamp'].dt.year == 2004)]

sfh = sfh_df.pipe(subset)
sfh

 city zip street price br lsqft bsqft timestamp
0 Alameda 94501.00 1001 Post Street 689000.00 4.00 4484.00 1982.00 2004-08-29
3 Alameda 94501.00 1001 Shoreline Drive \#108 485000.00 2.00 39353.00 1360.00 2004-09-05
10 Alameda 94501.00 1001 Shoreline Drive \#306 390000.00 2.00 39353.00 1360.00 2004-01-25
...
521467 Windsor 95492.00 9960 Herb Road 439000.00 3.00 9583.00 1626.00 2004-04-04
521471 Windsor 95492.00 9964 Troon Court 1200000.00 3.00 20038.00 4281.00 2004-10-31
521478 Windsor 95492.00 9980 Brooks Road 650000.00 3.00 45738.00 1200.00 2004-10-24

105996 rows × 8 columns

For these data, the shape of the distribution of sale price remains the same—price is
still highly skewed to the right. We continue to work with this subset to address the
question of whether there are any potentially important features to study along with
price.

Examining Other Features
In addition to the sale price, which is our main focus, a few other features that might
be important to our investigation are the size of the house, lot (or property) size, and
number of bedrooms. We explore the distributions of these features and their rela‐
tionship to sale price and to each other.

Since the size of the house and the property are likely related to its price, it seems
reasonable to guess that these features are also skewed to the right, so we apply a log
transformation to the building size:

sfh = sfh.assign(log_bsqft=np.log10(sfh['bsqft']))

We compare the distribution of building size on the regular and logged scales:

fig = make_subplots(1,2)
fig.add_trace(go.Histogram(x=sfh['bsqft'], histnorm='percent',
 nbinsx=60), row=1, col=1)
fig.add_trace(go.Histogram(x=sfh['log_bsqft'], histnorm='percent',
 nbinsx=60), row=1, col=2)

fig.update_xaxes(title='Building size (ft²)', row=1, col=1)
fig.update_xaxes(title='Building size (ft², log10)', row=1, col=2)
fig.update_yaxes(title="percent", row=1, col=1)

Example: Sale Prices for Houses | 225

fig.update_yaxes(range=[0, 18])
fig.update_layout(width=450, height=250, showlegend=False)
fig

The distribution is unimodal with a peak at about 1,500 ft², and many houses are over
2,500 ft² in size. We have confirmed our intuition: the log-transformed building size
is nearly symmetric, although it maintains a slight skew. The same is the case for the
distribution of lot size.

Given that both house and lot size have skewed distributions, a scatterplot of the two
should most likely be on log scale too:

sfh = sfh.assign(log_lsqft=np.log10(sfh['lsqft']))

We compare the plot with and without the log transformation:

The scatterplot on the left is in the original units, which makes it difficult to discern
the relationship because most of the points are crowded into the bottom of the plot‐
ting region. In contrast, the scatterplot on the right reveals a few interesting features:
there is a horizontal line along the bottom of the scatterplot, where it appears that

226 | Chapter 10: Exploratory Data Analysis

many houses have the same lot size, no matter the building size; and there appears to
be a slight positive log–log linear association between lot and building size.

Let’s look at some lower quantiles of lot size to try to figure out this unusual value:

percs = [0.5, 1, 1.5, 2, 2.5, 3]
lots = np.percentile(sfh['lsqft'].dropna(), percs, method='lower')
pd.DataFrame({'lot_size': lots}, index=percs)

 lot_size
0.50 436.00
1.00 436.00
1.50 436.00
2.00 436.00
2.50 436.00
3.00 782.00

We found something interesting: about 2.5% of the houses have a lot size of 436 ft2.
This is tiny and makes little sense, so we make a note of the anomaly for further
investigation.

Another measure of house size is the number of bedrooms. Since this is a discrete
quantitative variable, we can treat it as a qualitative feature and make a bar plot.

Houses in the Bay Area tend to be on the smaller side, so we venture to guess that the
distribution will have a peak at three and skew to the right, with a few houses having
five or six bedrooms. Let’s check:

br_cat = sfh['br'].value_counts().reset_index()
px.bar(br_cat, x="br", y="count", width=350, height=250,
 labels={'br':'Number of bedrooms'})

Example: Sale Prices for Houses | 227

The bar plot confirms that we generally had the right idea. However, we find that
there are some houses with over 30 bedrooms! That’s a bit hard to believe and points
to another possible data quality problem. Since the records include the addresses of
the houses, we can double-check theses values on a real estate app.

In the meantime, let’s just transform the number of bedrooms into an ordinal feature
by reassigning all values larger than 8 to 8+, and re-create the bar plot with the trans‐
formed data:

eight_up = sfh.loc[sfh['br'] >= 8, 'br'].unique()
sfh['new_br'] = sfh['br'].replace(eight_up, 8)

br_cat = sfh['new_br'].value_counts().reset_index()
px.bar(br_cat, x="new_br", y="count", width=350, height=250,
 labels={'new_br':'Number of bedrooms'})

We can see that even if we lump all of the houses with 8+ bedrooms together, they do
not amount to many. The distribution is nearly symmetric with a peak at 3, nearly the
same proportion of houses have two or four bedrooms, and nearly the same have one
or five. There is asymmetry present, with a few houses having six or more bedrooms.

Now we examine the relationship between the number of bedrooms and sale price.
Before we proceed, we save the transformations done thus far:

def log_vals(df):
 return df.assign(log_price=np.log10(df['price']),
 log_bsqft=np.log10(df['bsqft']),
 log_lsqft=np.log10(df['lsqft']))

def clip_br(df):
 eight_up = df.loc[df['br'] >= 8, 'br'].unique()
 new_br = df['br'].replace(eight_up, 8)
 return df.assign(new_br=new_br)

228 | Chapter 10: Exploratory Data Analysis

sfh = (sfh_df
 .pipe(subset)
 .pipe(log_vals)
 .pipe(clip_br)
)

Now we’re ready to consider relationships between the number of bedrooms and
other variables.

Delving Deeper into Relationships
Let’s begin by examining how the distribution of price changes for houses with differ‐
ent numbers of bedrooms. We can do this with box plots:

px.box(sfh, x='new_br', y='price', log_y=True, width=450, height=250,
 labels={'new_br':'Number of bedrooms','price':'Sale price (USD)'})

The median sale price increases with the number of bedrooms from one to five, but
for the largest houses (those with more than six bedrooms), the distribution of log-
transformed sale price appears nearly the same.

We would expect houses with one bedroom to be smaller than houses with, say, four
bedrooms. We might also guess that houses with six or more bedrooms are similar in
size and price. To dive deeper, we consider a kind of transformation that divides price
by building size to give us the price per square foot. We want to check if this feature is
constant for all houses; in other words, if price is primarily determined by size. To do
this we look at the relationship between the two pairs of size and price, and price per
square foot and size:

sfh = sfh.assign(
 ppsf=sfh['price'] / sfh['bsqft'],
 log_ppsf=lambda df: np.log10(df['ppsf']))

Example: Sale Prices for Houses | 229

We create two scatterplots. The one on the left shows price against building size (both
log-transformed), and the plot on the right shows price per square foot (log-
transformed) against building size. In addition, each plot has an added smooth curve
that reflects the local average price or price per square foot for buildings of roughly
the same size:

The lefthand plot shows what we expect—larger houses cost more. We also see that
there is roughly a log–log association between these features.

The righthand plot in this figure is interestingly nonlinear. We see that smaller houses
cost more per square foot than larger ones, and the price per square foot for larger
houses is relatively flat. This feature appears to be quite interesting, so we save the
price per square foot transforms into sfh:

def compute_ppsf(df):
 return df.assign(
 ppsf=df['price'] / df['bsqft'],
 log_ppsf=lambda df: np.log10(df['ppsf']))

So far we haven’t considered the relationship between prices and location. There are
house sales from over 150 different cities in this dataset. Some cities have a handful of
sales and others have thousands. We continue our narrowing down of the data and
examine relationships for a few cities next.

Fixing Location
You may have heard the expression: there are three things that matter in real estate—
location, location, location. Comparing prices across cities might bring additional
insights to our investigation.

230 | Chapter 10: Exploratory Data Analysis

We examine data for some cities in the San Francisco East Bay: Richmond, El Cerrito,
Albany, Berkeley, Walnut Creek, Lamorinda (which is a combination of Lafayette,
Moraga, and Orinda, three neighboring bedroom communities), and Piedmont.

Let’s begin by comparing the distribution of sale price for these cities:

cities = ['Richmond', 'El Cerrito', 'Albany', 'Berkeley',
 'Walnut Creek', 'Lamorinda', 'Piedmont']

px.box(sfh.query('city in @cities'), x='city', y='price',
 log_y=True, width=450, height=250,
 labels={'city':'', 'price':'Sale price (USD)'})

The box plots show that Lamorinda and Piedmont tend to have more expensive
homes and Richmond has the least expensive, but there is overlap in sale price for
many cities.

Next, we examine the relationship between price per square foot and house size more
closely with faceted scatterplots, one for each of four cities:

four_cities = ["Berkeley", "Lamorinda", "Piedmont", "Richmond"]
fig = px.scatter(sfh.query("city in @four_cities"),
 x="bsqft", y="log_ppsf", facet_col="city", facet_col_wrap=2,
 labels={'bsqft':'Building size (ft^2)',
 'log_ppsf': "Price per square foot"},
 trendline="ols", trendline_color_override="black",
)

fig.update_layout(xaxis_range=[0, 5500], yaxis_range=[1.5, 3.5],
 width=450, height=400)
fig.show()

Example: Sale Prices for Houses | 231

The relationship between price per square foot and building size is roughly log-linear,
with a negative association for each of the four locations. While not parallel, it does
appear that there is a location boost for houses, regardless of size, where, say, a house
in Berkeley costs about $250 more per square foot than a house in Richmond. We
also see that Piedmont and Lamorinda are more expensive cities, and in both cities
there is not the same reduction in price per square foot for larger houses in compari‐
son to smaller ones. These plots support the “location, location, location” adage.

In EDA, we often revisit earlier plots to check whether new findings add insights to
previous visualizations. It is important to continually take stock of our findings and
use them to guide us in further explorations. Let’s summarize our findings so far.

EDA Discoveries
Our EDA has uncovered several interesting phenomena. Briefly, some of the most
notable are:

• Sale price and building size are highly skewed to the right with one mode.
• Price per square foot decreases nonlinearly with building size, with smaller

houses costing more per square foot than larger houses and price per square foot
being roughly constant for large houses.

232 | Chapter 10: Exploratory Data Analysis

• More desirable locations add a bump in sale price that is roughly the same
amount for houses of different sizes.

There are many additional explorations we can (and should) perform, and there are
several checks that we should make. These include investigating the 436 value for lot
size and cross-checking unusual houses, like the 30-bedroom house and the $20M
house, with online real estate apps.

We narrowed our investigation down to one year and later to a few cities. This nar‐
rowing helped us control for features that might interfere with finding simple rela‐
tionships. For example, since the data were collected over several years, the date of
sale may confound the relationship between sale price and number of bedrooms. At
other times, we want to consider the effect of time on prices. To examine price
changes over time, we often make line plots, and we adjust for inflation. We revisit
these data in Chapter 11 when we consider data scope and look more closely at trends
in time.

Despite being brief, this section conveys the basic approach of EDA in action. For an
extended case study on a different dataset, see Chapter 12.

Summary
In this chapter, we introduced the nominal, ordinal, and numerical feature types and
their importance for data analysis. When presented with a dataset, we demonstrated
how to consult the data dictionary and the data itself to determine the feature types
for each column. We also explained how the storage type is not to be confused with
feature type. Since much of EDA is carried out with statistical graphs, we described
how to recognize and interpret the shapes and patterns that emerge and how to con‐
nect these to the data being plotted. Finally, we provided guidelines for how you
might conduct an EDA, and provided an example.

One approach that you may find helpful in developing your intuition about distribu‐
tions and relationships of features is to make a guess about what you will see before
you make the plot. Try to sketch or describe what you think the shape of distribution
will be, and then make the plot. For example, variables that have a natural lower/
upper bound on their values tend to have a long tail on the opposite of the bound.
The distribution of income (bounded below by 0) tends to have a long right tail, and
exam scores (bounded above by 100) tend to have a long left tail. You can make simi‐
lar guesses for the shape of a relationship. We saw that price and house size had
nearly a log–log linear relationship. As you gain intuition about shapes, it becomes
easier to carry out an EDA; you can more easily identify when a plot shows a surpris‐
ing shape.

Summary | 233

Our focus in this chapter was on “reading” visualizations. In Chapter 11, we provide
style guidelines for how to create informative, effective, and beautiful graphs. Many of
the ideas in that chapter were followed here, but we have not called attention to them.

234 | Chapter 10: Exploratory Data Analysis

CHAPTER 11

Data Visualization

As data scientists, we create data visualizations in order to understand our data and
explain our analyses to other people. A plot should have a message, and it’s our job to
communicate this message as clearly as possible.

In Chapter 10, we connected the choice of a statistical graph to the kind of data being
plotted; we also introduced many standard plots and showed how to read them. In
this chapter, we discuss the principles of effective data visualization that make it easier
for our audience to grasp the message in our plot. We talk about how to choose scales
for axes, handle large amounts of data with smoothing and aggregation, facilitate
meaningful comparisons, incorporate study design, and add contextual information.
We also show how to create plots using plotly, a popular package for plotting in
Python.

One tricky part about writing a chapter on data visualization is that software packages
for visualization change all the time, so any code we display can quickly get out of
date. Because of this, some books avoid code entirely. We instead strike a balance,
where we cover high-level data visualization principles that are broadly useful. Then
we separately include practical plotting code to implement these principles. When
new software becomes available, readers can still use our principles to guide the cre‐
ation of their visualizations.

Choosing Scale to Reveal Structure
In Chapter 10, we explored prices for houses sold in the San Francisco Bay Area
between 2003 and 2009. Let’s revisit that example and take a look at a histogram of
sale prices:

px.histogram(sfh, x='price', nbins=100,
 labels={'price':"Sale price (USD)"}, width=350, height=250)

235

While this plot accurately displays the data, most of the visible bins are crammed into
the left side of the plot. This makes it hard to understand the distribution of prices.

Through data visualization, we want to reveal important features of the data, like the
shape of a distribution and the relationship between two or more features. As this
example shows, after we produce an initial plot, there are still other aspects we need
to consider. In this section, we cover principles of scale that help us decide how to
adjust the axis limits, place tick marks, and apply transformations. We begin by
examining when and how we might adjust a plot to reduce empty space; in other
words, we try to fill the data region of our plot with data.

Filling the Data Region
As we can see from the histogram of sale prices, it’s hard to read a distribution when
most of the data appear in a small portion of the plotting region. When this happens,
important features of the data, like multiple modes and skewness, can be obscured. A
similar issue happens for scatterplots. When all the points are bunched together in
the corner of a scatterplot, it’s hard to see the shape of the distribution and therefore
glean any insights the shape would impart.

This issue can crop up when there are a few unusually large observations. In order to
get a better view of the main portion of the data, we can drop those observations
from the plot by adjusting the x- or y-axis limits, or we can remove the outlier values
from the data before plotting. In either case, we mention this exclusion in the caption
or on the plot itself.

Let’s use this idea to improve the histogram of sale prices. In the side-by-side plots
that follow, we clip the data by changing the limits of the x-axis. On the left, we’ve
excluded houses that cost over $2 million. The shape of the distribution for the bulk
of the houses is much clearer in this plot. For instance, we can more easily observe

236 | Chapter 11: Data Visualization

the skewness and a smaller secondary mode. On the right, we separately show detail
in the long right tail of the distribution (see it larger online):

Notice that the x-axis in the left plot includes 0, but the x-axis in the right plot begins
at $2M. We consider when to include or exclude 0 on an axis next.

Including Zero
We often don’t need to include 0 on an axis, especially if including it makes it difficult
to fill the data region. For example, let’s make a scatterplot of average longevity plot‐
ted against average height for dog breeds. (This dataset was first introduced in Chap‐
ter 10; it includes several features for 172 breeds.)

The x-axis of the plot on the left starts at 10 cm since all dogs are at least that tall, and
similarly, the y-axis begins at 6 years. The scatterplot on the right includes 0 on both
axes. This pushes the data up to the top of the data region and leaves empty space that
doesn’t help us see the linear relationship.

Choosing Scale to Reveal Structure | 237

https://oreil.ly/lVDrE

There are some cases where we usually want to include 0. For bar charts, including 0
is important so that the heights of the bars directly relate to the data values. As an
example, we’ve created two bar charts that compare the longevity of dog breeds. The
left plot includes 0, but the right plot doesn’t:

It’s easy to incorrectly conclude from the right plot that small breeds live twice as long
as large breeds.

We also typically want to include 0 when working with proportions, since propor‐
tions range from 0 to 1. The following plot shows the proportion of breeds in each
type:

In both the bar and dot plots, including 0 makes it easier for you to accurately com‐
pare the relative sizes of the categories.

Earlier, when we adjusted axes, we essentially dropped data from our plotting region.
While this is a useful strategy when a handful of observations are unusually large (or
small), it is less effective with skewed distributions. In this situation, we often need to
transform the data to gain a better view of its shape.

238 | Chapter 11: Data Visualization

Revealing Shape Through Transformations
Another common way to adjust scale is to transform the data or the plot’s axes. We
use transformations for skewed data so that it is easier to inspect the distribution.
And when the transformation produces a symmetric distribution, the symmetry car‐
ries with it useful properties for modeling (see Chapter 15).

There are multiple ways to transform data, but the log transformation tends to be
especially useful. For instance, in the following charts we reproduced two histograms
of San Francisco house sale prices. The top histogram is the original data. For the his‐
togram below, we took the log (base 10) of the prices before plotting:

The log transformation makes the distribution of prices more symmetric. Now we
can more easily see important features of the distribution, like the mode at around
105.85, which is about 700,000, and the secondary mode near 105.55, or 350,000.

The downside of using the log transform is that the actual values aren’t as intuitive—
in this example, we needed to convert the values back to dollars to understand the

Choosing Scale to Reveal Structure | 239

sale price. Therefore, we often favor transforming the axis to a log scale, rather than
the data. This way, we can see the original values on the axis:

This histogram with its log-scaled x-axis essentially shows the same shape as the his‐
togram of the transformed data. But since the axis is displayed in the original units,
we can directly read off the location of the modes in dollars. Note that the bins get
narrower to the right because the bin widths are equal on the USD scale but plotted
on the log USD scale. Also note that μ on the y-axis is 10−6.

The log transform can also reveal shape in scatterplots. Here, we’ve plotted building
size on the x-axis and lot size on the y-axis. It’s hard to see the shape in this plot since
many of the points are crammed along the bottom of the data region:

240 | Chapter 11: Data Visualization

However, when we use a log scale for both the x- and y-axes, the shape of the rela‐
tionship is much easier to see:

px.scatter(sfh, x='bsqft', y='lsqft',
 log_x=True, log_y=True,
 labels={"bsqft": "Building size (sq ft)",
 "lsqft": "Lot size (sq ft)"},
 width=350, height=250)

With the transformed axes, we can see that the lot size increases roughly linearly with
building size (on the log scale). The log transformation pulls large values—values that
are orders of magnitude larger than others—in toward the center. This transforma‐
tion can help fill the data region and uncover hidden structure, as we saw for both the
distribution of house price and the relationship between house size and lot size.

In addition to setting the limits of an axis and transforming an axis, we also want to
consider the aspect ratio of the plot—the length compared to the width. Adjusting the
aspect ratio is called banking, and in the next section, we show how banking can help
reveal relationships between features.

Banking to Decipher Relationships
With scatterplots, we try to choose scales so that the relationship between the two fea‐
tures roughly follows a 45-degree line. This scaling is called banking to 45 degrees. It
makes it easier to see shape and trends because our eyes can more easily pick up devi‐
ations from a line this way. As an example of this, we’ve reproduced the plot that
shows longevity of dog breeds against height:

px.scatter(dogs, x='height', y='longevity', width=300, height=250,
 labels={"height": "Height (cm)",
 "longevity": "Typical lifespan (yr)"})

Choosing Scale to Reveal Structure | 241

The scatterplot has been banked to 45 degrees, and we can more easily see how the
data roughly follow a line and where they deviate a bit at the extremes.

While banking to 45 degrees helps us see whether or not the data follow a linear rela‐
tionship, when there is clear curvature it can be hard to figure out the form of the
relationship. When this happens, we try transformations that will get the data to fall
along a straight line (see, for example, Figure 11-1). The log transformation can be
useful in uncovering the general form of curvilinear relationships.

Revealing Relationships Through Straightening
We often use scatter plots to look at the relationship between two features. For
instance, here we’ve plotted height against weight for the dog breeds:

px.scatter(dogs, x='height', y='weight', width=350, height=250,
 labels={"height": "Height (cm)", "weight": "Weight (lb)"})

242 | Chapter 11: Data Visualization

We see that taller dogs weigh more, but this relationship isn’t linear.

When it looks like two variables have a nonlinear relationship, it’s useful to try apply‐
ing a log scale to the x-axis, y-axis, or both. Let’s look for a linear relationship in the
scatterplot with transformed axes. Here we re-created the plot of weight by height for
dog breeds, but this time we applied a log scale to the y-axis:

px.scatter(dogs, x='height', y='weight', log_y=True,
 labels={"height": "Height (cm)", "weight": "Weight (lb)"},
 width=300, height=300)

This plot shows a roughly linear relationship, and in this case, we say that there’s a
log–linear relationship between dog weight and height.

In general, when we see a linear relationship after transforming one or both axes, we
can use Table 11-1 to reveal what relationship the original variables have (in the table,
a and b are constants). We make these transformations because it is easier for us to
see if points fall along a line than to see if they follow a power law compared to an
exponential.

Choosing Scale to Reveal Structure | 243

Table 11-1. Relationships between two variables when transformations are applied

x-axis y-axis Relationship Also known as
No transform No transform Linear: y = ax + b Linear

Log–scale No transform Log: y = alog x + b Linear–log

No transform Log–scale Exponential: y = bax Log–linear

Log–scale Log–scale Power: y = bxa Log–log

As Table 11-1 shows, the log transform can reveal several common types of relation‐
ships. Because of this, the log transform is considered the jackknife of transforma‐
tions. As another, albeit artificial, example, the leftmost plot in Figure 11-1 reveals a
curvilinear relationship between x and y. The middle plot shows a different
curvilinear relationship between log(y) and x; this plot also appears nonlinear. A fur‐
ther log transformation, at the far right, displays a plot of log(y) against log(x). This
plot confirms that the data have a log–log (or power) relationship because the trans‐
formed points fall along a line.

Figure 11-1. Scatterplots showing how log transforms can “straighten” a curvilinear rela‐
tionship between two variables

Adjusting scale is an important practice in data visualization. While the log transform
is versatile, it doesn’t handle all situations where skew or curvature occurs. For exam‐
ple, at times the values are all roughly the same order of magnitude and the log trans‐
formation has little impact. Another transformation to consider is the square root
transformation, which is often useful for count data.

In the next section, we look at principles of smoothing, which we use when we need
to visualize lots of data.

244 | Chapter 11: Data Visualization

Smoothing and Aggregating Data
When we have lots of data, we often don’t want to plot all of the individual data
points. The following scatter plot shows data from Cherry Blossom, an annual 10-
mile race that takes place in Washington, DC, in April, when the cherry trees are in
bloom. These data were scraped from the race’s website and include official times and
other information for all registered male runners from 1999 to 2012. We’ve plotted
the runners’ ages on the x-axis and race times on the y-axis:

This scatterplot contains over 70,000 points. With so many points, many of them
overlap. This is a common problem called overplotting. In this case, overplotting pre‐
vents us from seeing how time and age are related. About the only thing that we can
see in this plot is a group of very young runners, which points to possible issues with
data quality. To address overplotting, we use smoothing techniques that aggregate
data before plotting.

Smoothing Techniques to Uncover Shape
The histogram is a familiar type of plot that uses smoothing. A histogram aggregates
data values by putting points into bins and plotting one bar for each bin. Smoothing
here means that we cannot differentiate the location of individual points in a bin: the
points are smoothly allocated across their bins. With histograms, the area of a bin
corresponds to the percentage (or count or proportion) of points in the bin. (Often
the bins are equal in width, and we take a shortcut to label the height of a bin as the
proportion.)

The following histogram plots the distribution of lifespans for dog breeds:

Smoothing and Aggregating Data | 245

https://www.cherryblossom.org

Above this histogram is a rug plot that draws a single line for every data value. We
can see in the tallest bin that even a small amount of data can cause overplotting in
the rug plot. By smoothing out the points in the rug plot, the histogram reveals the
general shape of the distribution. In this case, we see that many breeds have a longev‐
ity of about 12 years. For more on how to read and interpret histograms, see
Chapter 10.

Another common smoothing technique is kernel density estimation (KDE). A KDE
plot shows the distribution using a smooth curve rather than bars. In the following
plot, we show the same histogram of dog longevity with a KDE curve overlaid. The
KDE curve has a similar shape as the histogram:

It might come as a surprise to think of a histogram as a smoothing method. Both the
KDE and histogram aim to help us see important features in the distribution of val‐
ues. Similar smoothing techniques can be used with scatterplots. This is the topic of
the next section.

246 | Chapter 11: Data Visualization

Smoothing Techniques to Uncover Relationships and Trends
We can find high-density regions of a scatterplot by binning data, like in a histogram.
The following plot remakes the earlier scatterplot of the Cherry Blossom race times
against age. This plot uses hexagonal bins to aggregate points together, and then
shades the hexagons based on how many points fall in them:

runners_over_17 = runners[runners["age"] > 17]

plt.figure(figsize=(4, 4))
plt.hexbin(data=runners_over_17, x='age', y='time', gridsize=35, cmap='Blues')

sns.despine()
plt.grid(False)
plt.xlabel("Runner age (yr)")
plt.ylabel("Race time (sec)");

Notice the high-density region in the 25-to-40 age group, signified by the dark region
in the plot. The plot shows us that many of the runners in this age range complete the
race in around 5,000 seconds (about 80 minutes). (Note that we drop the dubious
young runners from this plot.) We can also see upward curvature in the region corre‐
sponding to the 40-to-60 age group, which indicates that these runners are generally
slower than those in the 25-to-40 age group. This plot is similar to a heat map, where
the higher-density regions are conveyed through hotter or brighter colors.

Kernel density estimation also works in two dimensions. When we use KDE in two
dimensions, we typically plot the contours of the resulting three-dimensional shape,
and we read the plot like a topographical map:

Smoothing and Aggregating Data | 247

plt.figure(figsize=(5, 3))
fig = sns.kdeplot(data=runners_over_17, x='age', y='time')
plt.xlabel("Runner age (yr)")
plt.ylabel("Race time (sec)");

This two-dimensional KDE gives similar insights as the shaded squares of the previ‐
ous plot. We see a high concentration of runners in the 25-to-40 age group, and these
runners have times that appear to be roughly 5,000 seconds. Smoothing lets us get a
better picture when there’s lots of data because it can reveal the locations of highly
concentrated data values and the shape of these high-concentration regions. These
regions may be impossible to see otherwise.

Another smoothing approach that is often more informative smooths the y-values for
points with a similar x-value. To explain, let’s group together runners with similar
ages, using five-year increments: 20–25, 25–30, 30–35, and so on. Then, for each five-
year bin of runners, we average their race times, plot the average time for each group,
and connect the points to form a “curve”:

times = (
 runners_over_17.assign(age_5yr=runners_over_17['age'] // 5 * 5)
 .groupby('age_5yr')['time'].mean().reset_index()
)

px.line(times, x='age_5yr', y='time',
 labels={'time':"Average race time (sec)", 'age_5yr':"Runner age (5-yr)"},
 markers=True,
 width=350, height=250)

248 | Chapter 11: Data Visualization

This plot shows once again that runners in the 25-to-40 age range have typical run
times of about 5,400 seconds. It also shows that older runners took longer to com‐
plete the race on average (not really a surprise, but it wasn’t nearly as evident in the
earlier plots). The dip in times for runners under age 20 and the flattening of the
curve at age 80 may simply be the result of fewer and fitter runners in these groups.
Another smoothing technique uses kernel smoothing similar to the KDE. We don’t go
into the details here.

The binning and kernel smoothing techniques rely on a tuning parameter that speci‐
fies the width of the bin or the spread of the kernel, and we often need to specify this
parameter when making a histogram, KDE, or smooth curve. This is the topic of the
next section.

Smoothing Techniques Need Tuning
Now that we’ve seen how smoothing is useful for plotting, we turn to the issue of tun‐
ing. For histograms, the width of the bins or, for equal-width bins, the number of bins
affects the look of the histogram. The left histogram of longevity shown here has a
few wide bins, and the right histogram has many narrow bins (see it larger online):

Smoothing and Aggregating Data | 249

https://oreil.ly/SmLYq

In both histograms, it’s hard to see the shape of the distribution. With a few wide bins
(the plot on the left), we have oversmoothed the distribution, which makes it impos‐
sible to discern modes and tails. On the other hand, too many bins (the plot on the
right) gives a plot that’s little better than a rug plot. KDE plots have a parameter called
the bandwidth that works similarly to the bin width of a histogram.

Most histogram and KDE software automatically chooses the bin width for the histo‐
gram and the bandwidth for the kernel. However, these parameters often need a bit of
fiddling to create the most useful plot. When you create visualizations that rely on
tuning parameters, it’s important to try a few different values before settling on one.

A different approach to data reduction is to examine quantiles. This is the topic of the
next section.

Reducing Distributions to Quantiles
We found in Chapter 10 that while box plots aren’t as informative as histograms, they
can be useful when comparing the distributions of many groups at once. A box plot
reduces the data to a few essential features based on the data quartiles. More gener‐
ally, quantiles (the lower quartile, median, and upper quartile are the 25th, 50th, and
75th quantiles) can provide a useful reduction in the data when comparing
distributions.

When two distributions are roughly similar in shape, it can be hard to compare them
with histograms. For instance, the histograms that follow show the price distributions
for two- and four-bedroom houses in the San Francisco housing data. The distribu‐
tions look roughly similar in shape. But a plot of their quantiles handily compares the
distributions’ center, spread, and tails (see it larger online):

px.histogram(sfh.query('br in [2, 4]'),
 x='price', log_x=True, facet_col='br',
 labels={'price':"Sale price (USD)"},
 width=700, height=250)

250 | Chapter 11: Data Visualization

https://oreil.ly/zVagW

We can compare quantiles with a quantile–quantile plot, called q–q plot for short. To
make this plot, we first compute percentiles (also called quantiles) for both the two-
and four-bedroom distributions of price:

br2 = sfh.query('br == 2')
br4 = sfh.query('br == 4')
percs = np.arange(1, 100, 1)
perc2 = np.percentile(br2['price'], percs, method='lower')
perc4 = np.percentile(br4['price'], percs, method='lower')
perc_sfh = pd.DataFrame({'percentile': percs, 'br2': perc2, 'br4': perc4})
perc_sfh

 percentile br2 br4
0 1 1.50e+05 2.05e+05
1 2 1.82e+05 2.50e+05
2 3 2.03e+05 2.75e+05
...
96 97 1.04e+06 1.75e+06
97 98 1.20e+06 1.95e+06
98 99 1.44e+06 2.34e+06

99 rows × 3 columns

Then we plot the matching percentiles on a scatterplot. We usually also show the ref‐
erence line y = x to help with the comparison:

fig = px.scatter(perc_sfh, x='br2', y='br4', log_x=True, log_y=True,
 labels={'br2': 'Price of 2-bedroom house',
 'br4': 'Price of 4-bedroom house'},
 width=350, height=250)

fig.add_trace(go.Scatter(x=[1e5, 2e6], y=[1e5, 2e6],
 mode='lines', line=dict(dash='dash')))

fig.update_layout(showlegend=False)
fig

Smoothing and Aggregating Data | 251

When the quantile points fall along a line, the variables have similarly shaped distri‐
butions. Lines parallel to the reference indicate a difference in center, lines with
slopes other than 1 indicate a difference in spread, and curvature indicates a differ‐
ence in shape. From the preceding q–q plot, we see that the distribution of price for
four-bedroom houses is similar in shape to the two-bedroom distribution, except for
a shift of about $100K and a slightly longer right tail (indicated by the upward bend
for large values). Reading a q–q plot takes practice. Once you get the hang of it,
though, it can be a handy way to compare distributions. Notice that the housing data
have over 100,000 observations, and the q–q plot has reduced the data to 99 percen‐
tiles. This data reduction is quite useful. However, we don’t always want to use
smoothers. This is the topic of the next section.

When Not to Smooth
Smoothing and aggregating can help us see important features and relationships, but
when we have only a handful of observations, smoothing techniques can be mislead‐
ing. With just a few observations, we prefer rug plots over histograms, box plots, and
density curves, and we use scatterplots rather than smooth curves and density con‐
tours. This may seem obvious, but when we have a large amount of data, the amount
of data in a subgroup can quickly dwindle. This phenomenon is an example of the
curse of dimensionality.

One of the most common misuses of smoothing happens with box plots. As an exam‐
ple, here is a collection of seven box plots of longevity, one for each of seven types of
dog breed:

252 | Chapter 11: Data Visualization

px.box(dogs, x='group', y='longevity',
 labels={'group':"", 'longevity':"Longevity (yr)"},
 width=500, height=250)

Some of these box plots have as few as two or three observations. The strip plot that
follows is a preferable visualization:

px.strip(dogs, x="group", y="longevity",
 labels={'group':"", 'longevity':"Longevity (yr)"},
 width=400, height=250)

In this plot, we can still compare the groups, but we also see the exact values in each
group. Now we can tell that there are only three breeds in the non-sporting group; the
impression of a skewed distribution, based on the box plot, reads too much into the
shape of the box.

This section introduced the problem of overplotting, where we have overlapping
points because of a large dataset. To address this issue, we introduced smoothing
techniques that aggregate data. We saw two common examples of smoothing—

Smoothing and Aggregating Data | 253

1 US government surveys still collect data based on a binary definition of gender, but progress is being made.
For example, starting in 2022, US citizens are allowed to select an “X” as their gender marker on their pass‐
port application.

binning and kernel smoothing—and applied them in the one- and two-dimensional
settings. In one dimension, these are histograms and kernel density curves, respec‐
tively, and they both help us see the shape of a distribution. In two dimensions, we
found it useful to smooth y-values while keeping x-values fixed in order to visualize
trends. We addressed the need to tune the smoothing amount to get more informa‐
tive histograms and density curves, and we cautioned against smoothing with too few
data.

There are many other ways to reduce overplotting in scatter plots. For instance, we
can make the dots partially transparent so that overlapping points appear darker. If
many observations have the same values (like when longevity is rounded to the near‐
est year), then we can add a small amount of random noise to the values to reduce the
amount of overplotting. This procedure is called jittering, and it is used in the strip
plot of longevity. Transparency and jittering are convenient for medium-sized data.
However, they don’t work well for large datasets since plotting all the points still over‐
whelms the visualization.

The quantile–quantile plot we introduced offers one way to compare distributions
with far fewer points; another is to use side-by-side box plots and yet another is to
overlay KDE curves in the same plot. We often aim to compare distributions and
relationships across subsets (or groups) of data, and we next discuss several design
principles that facilitate meaningful comparisons for a variety of plot types.

Facilitating Meaningful Comparisons
The same data can be visualized in many different ways, and deciding which plot to
make can be daunting. Generally speaking, our plot should help a reader make mean‐
ingful comparisons. In this section, we go over several useful principles that can
improve the clarity of our plots.

Emphasize the Important Difference
Whenever we make a plot that compares groups, we consider whether the plot
emphasizes the important difference. As a rule of thumb, it’s easier for readers to see
differences when plotted objects are aligned in ways that make these comparisons
easier to read. Let’s look at an example.

The US Bureau of Labor Statistics publishes data on income. We took the 2020
median full-time-equivalent weekly earnings for people over age 25 and plotted them.
We split people into groups by education level and sex:1

254 | Chapter 11: Data Visualization

https://oreil.ly/b0YMJ

labels = {"educ": "Education",
 "income": "Weekly earnings (USD)",
 "gender": "Sex"}
fig = px.bar(earn, x="educ", y="income",
 facet_col="gender", labels=labels,
 width=450, height=250)
fig.update_layout(margin=dict(t=30))

These bar plots show that earnings increase with more education. But arguably, a
more interesting comparison is between men and women of the same education level.
We can group the bars differently to focus instead on this comparison:

px.bar(earn, x='educ', y='income', color='gender',
 barmode='group', labels=labels,
 width=450, height=250)

This plot is much better; we can more easily compare the earnings of men and
women for each level of education. However, we can make this difference even clearer
using vertical alignment. Instead of bars, we use dots for groups of men and women
that align vertically at each education level:

Facilitating Meaningful Comparisons | 255

fig = px.line(earn, x='educ', y='income', symbol='gender',
 color='gender', labels=labels, width=450, height=250)
fig.update_traces(marker_size=10)

This plot more clearly reveals an important difference: the earnings gap between men
and women grows with education. We considered three plots that visualize the same
data, but they differ in how readily we can see the message in the plot. We prefer the
last one because it aligns the income differences vertically, making them easier to
compare.

Notice that in making all three plots, we ordered the education categories from the
least to greatest number of years of education. This ordering makes sense because
education level is ordinal. When we compare nominal categories, we use other
approaches to ordering.

Ordering Groups
With ordinal features, we keep the categories in their natural order when we make
plots, but the same principle does not apply for nominal features. Instead, we choose
an ordering that helps us make comparisons. With bar plots, it’s a good practice to
order the bars according to their height, while for box plots and strip plots, we typi‐
cally order the boxes/strips according to medians.

The two bar plots that follow each compare the mean lifespan for types of dog breeds:

256 | Chapter 11: Data Visualization

The plot on the left orders the bars alphabetically. We prefer the plot on the right
because it orders the bars by longevity, which makes it easier to compare longevity
across the categories. We don’t have to bounce back and forth or squint to guess
whether herding breeds have a shorter lifespan than toy breeds.

As another example, the following two sets of box plots each compare the distribu‐
tion of sale price for houses in different cities in the San Francisco East Bay area:

We prefer the plot on the right since it has boxes ordered according to the median
price for each city. Again, this ordering makes it easier to compare distributions
across groups, in this case cities. We see that the lower quartile and median price in
Albany and Walnut Creek are roughly the same, but the prices in Walnut Creek have
a greater right skew.

When possible, ordering bars in a bar plot by height and boxes in a box plot by
median makes it easier for us to make comparisons across groups. Another technique
used for presenting grouped data is stacking. We describe stacking in the next section
and provide examples to convince you to steer away from this sort of plot.

Facilitating Meaningful Comparisons | 257

Avoid Stacking
The figure that follows shows a stacked bar plot in which there is one bar for each city
and these bars are divided according to the proportion of houses sold that have from
one to eight or more bedrooms. This is called a stacked bar plot. The bar plot is based
on a cross-tabulation:

br_crosstab

br 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

city
Albany 1.21e-01 0.56 0.25 0.05 9.12e-03 1.01e-03 2.03e-03 4.05e-03
Berkeley 6.91e-02 0.38 0.31 0.16 4.44e-02 1.42e-02 6.48e-03 7.23e-03
El Cerrito 1.81e-02 0.34 0.47 0.14 2.20e-02 6.48e-03 0.00e+00 6.48e-04
Piedmont 8.63e-03 0.22 0.40 0.26 9.50e-02 1.29e-02 7.19e-03 1.44e-03
Richmond 3.60e-02 0.36 0.42 0.15 2.52e-02 7.21e-03 7.72e-04 7.72e-04
Walnut Creek 1.16e-01 0.35 0.30 0.18 4.37e-02 5.08e-03 4.12e-04 2.75e-04

Each bar in the plot has the same height of 1 because the segments represent the pro‐
portion of houses with one or more bedrooms in a city and so add to 1 or 100% (see
it in color online):

fig = px.bar(br_crosstab, width=450, height=300)
fig.update_layout(yaxis_title=None, xaxis_title=None,
 legend_title="# Bedrooms")
fig.show()

258 | Chapter 11: Data Visualization

https://oreil.ly/cIba_

It’s easy to compare the proportion of one-bedroom houses in each of the cities by
simply scanning across the top of the first segment in each column. But the compari‐
son of four-bedroom houses is more difficult. The bottoms of the segments are not
aligned horizontally, so our eyes must judge the lengths of segments that move up
and down across the plot. This up-and-down movement is called jiggling the baseline.
(We recognize that with so many colors, this plot does not render well in grayscale,
but our goal is to steer you away from plots like this one and the next, so we have kept
all of the colors for those of you reading the online version.)

Stacked line plots are even more difficult to read because we have to judge the gap
between curves as they jiggle up and down. The following plot shows carbon dioxide
(CO2) emissions from 1950 to 2012 for the 10 highest emitters (see it in color online):

Since the lines are stacked on top of each other, it’s very hard to see how the emis‐
sions for a particular country have changed and it’s hard to compare countries.
Instead, we can plot each country’s line without stacking, as the next plot illustrates
(see it in color online):

Facilitating Meaningful Comparisons | 259

https://oreil.ly/kjk9N
https://oreil.ly/kjk9N
https://oreil.ly/VUyuz
https://oreil.ly/erWuU

Now it’s much easier to see changes for individual countries and to compare countries
because we need judge only y-axis positions rather than short vertical segments with
different baselines. We also used a log scale on the y-axis. We can now see that some
countries have had flat rates of growth in CO2 emissions, such as the United States
and Japan, while others have increased much more quickly, like China and India, and
Germany has slowed its CO2 emissions. These aspects were nearly impossible to
detect when each country’s baseline jiggled across the plot.

In both of these plots, to make it easier to tell one country from the next, we have
used different line types and colors. Choosing colors to facilitate comparisons relies
on many considerations. This is the topic of the next section.

Selecting a Color Palette
Choosing colors also plays an important role in data visualization. We want to avoid
overly bright or dark colors so that we don’t strain the reader’s eyes. We should also
avoid color palettes that might be difficult for colorblind people—7% to 10% of peo‐
ple (mostly males) are red-green colorblind.

For categorical data, we want to use a color palette that can clearly distinguish
between categories. One example is shown at the top in Figure 11-2. From top to bot‐
tom, these palettes are qualitative for categorical data, diverging for numeric data
where you want to draw attention to both large and small values, and sequential for
numeric data where you want to emphasize either large or small values.

260 | Chapter 11: Data Visualization

Figure 11-2. Three printer-friendly palettes from ColorBrewer 2.0 (see it in color online)

For numeric data, we want to use a sequential color palette that emphasizes one side
of the spectrum more than the other or a diverging color palette that equally empha‐
sizes both ends of the spectrum and deemphasizes the middle. A sequential palette is
shown at the bottom and a diverging palette is shown in the middle of Figure 11-2.

We choose a sequential palette when we want to emphasize either low or high values,
like cancer rates. We choose a diverging palette when we want to emphasize both
extremes, like for two-party election results.

It’s important to choose a perceptually uniform color palette. By this we mean that
when a data value is doubled, the color in the visualization looks twice as colorful to
the human eye. We also want to avoid colors that create an afterimage when we look
from one part of the graph to another, colors of different intensities that make one
attribute appear more important than another, and colors that colorblind people have
trouble distinguishing between. We strongly recommend using a palette or a palette
generator made specifically for data visualizations.

Plots are meant to be examined for long periods of time, so we should choose colors
that don’t impede the reader’s ability to carefully study a plot. Even more so, the use of
color should not be gratuitous—colors should represent information. On a related
note, people typically have trouble distinguishing between more than about seven
colors, so we limit the number of colors in a plot. Finally, colors can appear quite dif‐
ferent when printed on paper in grayscale than when viewed on a computer screen.
When we choose colors, we keep in mind how our plots will be displayed.

Making accurate comparisons in a visualization is such an important goal that
researchers have studied how well people perceive differences in colors and other
plotting features such as angles and lengths. This is the topic of the next section.

Facilitating Meaningful Comparisons | 261

https://oreil.ly/0ub2H

Guidelines for Comparisons in Plots
Researchers have studied how accurately people can read information displayed in
different types of plots. They have found the following ordering, from most to least
accurately judged:

• Positions along a common scale, like in a rug plot, strip plot, or dot plot
• Positions on identical, nonaligned scales, like in a bar plot
• Length, like in a stacked bar plot
• Angle and slope, like in a pie chart
• Area, like in a stacked line plot or bubble chart
• Volume and density, like in a three-dimensional bar plot
• Color saturation and hue, like when overplotting with semitransparent points

As an example, here is a pie chart that shows the proportion of houses sold in San
Francisco that have from one to eight or more bedrooms, and a bar chart with the
same proportions:

It’s hard to judge the angles in the pie chart, and the annotations with the actual per‐
centages are needed. We also lose the natural ordering of the number of bedrooms.
The bar chart doesn’t suffer from these issues.

However, there are exceptions to any rule. Multiple pie charts with only two or three
slices in each pie can provide effective visualizations. For example, a set of pie charts
of the proportion of two-bedroom houses sold in each of six cities in the San Fran‐
cisco East Bay Area, ordered according to the proportion, can be an impactful visuali‐
zation. Yet, sticking with a bar chart will generally always be at least as clear as any pie
chart.

262 | Chapter 11: Data Visualization

Given these guidelines, we recommend sticking to position and length for making
comparisons. Readers can more accurately judge comparisons based on position or
length, rather than angle, area, volume, or color. But, if we want to add additional
information to a plot, we often use color, symbols, and line styles, in addition to posi‐
tion and length. We have shown several examples in this chapter.

We next turn to the topic of data design and how to reflect the aspects of when,
where, and how the data were collected in a visualization. This is a subtle but impor‐
tant topic. If we ignore the data scope, we can get very misleading plots.

Incorporating the Data Design
When we create a visualization, it’s important to consider the data scope, especially
the data design (see Chapter 2). Considering the question of how the data were col‐
lected can impact our plot choice and the comparisons we portray. These considera‐
tions include the time and place where the data were collected and the design used to
select a sample. We look at a few examples of how the data scope can inform the visu‐
alizations we make.

Data Collected Over Time
When data are collected over time, we typically make a line plot that puts timestamps
on the x-axis and a feature of interest on the y-axis to look for trends in time. As an
example, let’s revisit the data on San Francisco housing prices. These data were collec‐
ted from 2003 through 2008 and show the crash in 2008/2009 of the US housing bub‐
ble. Since time is a key aspect of the scope of these data, let’s visualize sale price as a
time series. Our earlier explorations showed that sale price is highly skewed, so let’s
work with percentiles rather than averages. We plot the median price (this is a form
of smoothing we saw earlier in this chapter):

Incorporating the Data Design | 263

https://oreil.ly/PUPiQ
https://oreil.ly/PUPiQ

This plot shows the rise in prices from 2003 to 2007 and the fall in 2008. But we can
show more information by plotting a few additional percentiles instead of just the
median. Let’s draw separate lines for the 10th, 30th, 50th (median), 70th, and 90th
percentile sale prices. When we examine prices over time, we typically need to adjust
for inflation so that the comparisons are on the same footing. In addition to adjusting
for inflation, let’s plot the prices relative to the starting price in 2003 for each of the
percentiles. This means that all the lines start at y = 1 in 2003. (A value of 1.5 for the
90th percentile in 2006 indicates that the sale price is 1.5 times the 90th percentile in
2003.) This normalization lets us see how the housing crash affected home owners in
the different parts of the market:

When we follow the 10th percentile line plot over time, we see that it increases
quickly in 2005, stays high relative to its 2003 value for a few years, and then drops
earlier and more quickly than the other percentiles. This tells us that the less expen‐
sive houses, such as starter homes, suffered greater volatility and lost much more
value in the housing market crash. In contrast, higher-end homes were affected less
by the crash; at the end of 2008, the 90th percentile home prices were still higher than
the 2003 prices. Applying this bit of domain knowledge helps reveal trends in the data
that we might otherwise miss, and shows how we can use the data design to improve
a visualization.

The housing data are an example of observational data that form a complete census in
a geographic region over a specific period of time. Next we consider another observa‐
tional study where self-selection and the time period impact the visualization.

264 | Chapter 11: Data Visualization

Observational Studies
We need to be particularly cautious with data that do not form a census or scientific
sample. We should also take care with cross-sectional studies, whether from a census
or scientific sample. For this example, we revisit the data from the Cherry Blossom
10-mile run. Earlier in this chapter, we made a smoothed curve to examine the rela‐
tionship between race time and age. We reproduce this plot here to highlight a poten‐
tial pitfall in interpretation:

It’s tempting to look at this plot and conclude that, for instance, a runner at age 60 can
typically expect to take an additional 600 seconds to finish the run than when they
were 40. However, this is a cross-sectional study, not a longitudinal study. The study
does not follow people over time; instead, it gets a snapshot of a cross-section of peo‐
ple. The 60-year-old runners represented in the plot are different people than the 40-
year-old runners. These two groups could be different in ways that affect the
relationship between race time and age. As a group, the 60-year-olds in the race are
likely to be fitter for their age than the 40-year-olds. In other words, the data design
doesn’t let us make conclusions about individual runners. The visualization isn’t
wrong, but we need to be careful about the conclusions we draw from it.

The design is even more complex because we have race results from many years. Each
year forms a cohort, a group of racers, and from one year to the next, the cohort
changes. We create a visualization that makes this message clear by comparing run‐
ners in different race years. Here, we’ve separately plotted lines for the runners in
1999, 2005, and 2010:

Incorporating the Data Design | 265

We see that the median race times in 2010 are higher at every age group than the
times for the runners in 2005, and in turn, the times are higher for the runners in
2005 than for the runners in 1999. It’s interesting that race times have slowed over the
years. This is quite likely due to the increased popularity of the race, where there is
higher participation from novice runners in more recent years. This example has
shown how we need to be aware of the data scope when interpreting patterns. We also
need to keep data scope in mind with scientific studies. This is the topic of the next
section.

Unequal Sampling
In a scientific study, we must consider the sample design because it can impact our
plots. Some samples draw individuals at unequal rates, and this needs to be accounted
for in our visualizations. We saw an example of a scientific study in Chapter 8 and
Chapter 9: the Drug Abuse Warning Network (DAWN) survey. These data are from a
complex randomized study of drug-related emergency room visits, and each record
comes with a weight that we must use in order to accurately represent the emergency
room visits in the population. The two bar plots that follow show the distribution of
the type of ER visit. (See them larger online.) The one on the left doesn’t use the sur‐
vey weights and the one on the right does:

266 | Chapter 11: Data Visualization

https://oreil.ly/LYAol

In the unweighted bar plot, the “Other” category is as frequent as the “Adverse reac‐
tion” category. However, when weighted, “Other” drops to about two-thirds of
“Adverse reaction.” Ignoring sampling weights can give a misleading presentation of a
distribution. Whether for a histogram, bar plot, box plot, two-dimensional contour,
or smooth curve, we need to use the weights to get a representative plot. Another
aspect of the data scope that can impact our choice of plots is where the data are col‐
lected, which is the topic of the next section.

Geographic Data
When our data contains geographic information like latitude and longitude, we
should consider making a map, in addition to the typical plots. For example, the fol‐
lowing map shows the locations for US air quality sensors, which is the focus of the
case study in Chapter 12:

Notice that there are many more points in California and the Eastern Seaboard. A
simple histogram of air quality with data from all of these sensors would misrepresent
the distribution of air quality in the US. To incorporate the spatial aspect into the dis‐
tribution, we can add air quality measurements to the map with different color mark‐
ers, and we can facet the histograms of air quality by location.

Incorporating the Data Design | 267

In addition to plotting features like bars, color, and line styles, we also have the option
to add text with contextual information to make our plot more informative. This is
the topic of the next section.

Adding Context
We have used text in our graphs throughout this chapter to provide meaningful axis
labels that include units of measurement, tick-mark labels for categories, and titles.
This is a good practice when sharing a visualization more broadly. A good goal is to
include enough context in a plot that it can stand alone—a reader should be able to
get the gist of the plot without needing to search for explanation elsewhere. That said,
every element of a statistical graph should have a purpose. Superfluous text or plot
features, often referred to as chartjunk, should be eliminated. In this section, we pro‐
vide a brief overview of ways we can add helpful context to our plots and an example
where we create a publication-ready plot by adding context.

Text context includes labels and captions. It is a good practice to consistently use
informative labels on tick marks and axes. For example, axis labels often benefit from
including units of measurement. Graphs should contain titles and legends when
needed. Informative labels are especially important for plots that other people will see
and interpret. However, even when we’re doing exploratory data analysis just for us,
we often want to include enough context that when we later return to an analysis we
can easily figure out what we plotted.

Captions serve several purposes. They describe what has been plotted and orient the
reader. Captions also point out important features of the plot and comment on their
implications. It’s OK for the caption to repeat information found in the text. Readers
often skim a publication and focus on section headings and visualizations, so plot
captions should be self-contained.

Reference markers bring additional context to the plotting region. Reference points
and lines that provide benchmarks, historical values, and other external information
help form comparisons and interpretations. For example, we often add a reference
line with slope 1 to a quantile–quantile plot. We might also add a vertical line on a
time-series plot to mark a special event, like a natural disaster.

The following example demonstrates how to add these context elements to a plot.

268 | Chapter 11: Data Visualization

Example: 100m Sprint Times
The following figure shows the race times in the men’s 100-meter sprint since 1968.
These data include only races that were electronically timed and held outdoors in
normal wind conditions, and the times included are only for those runners who came
in under 10 seconds. The plot is a basic scatterplot showing race time against year.
Beginning with this plot, we augment it to create a plot featured in a FiveThirtyEight
article about the 100-meter sprint:

When we want to prepare a plot for others to read, we consider the takeaway mes‐
sage. In this case, our main message is twofold: the best runners have been getting
faster over the past 50 years, and Usain Bolt’s remarkable record time of 9.58 seconds
set in 2009 remains untouched. (In fact, the second-best race time also belongs to
Bolt.) We provide context to this plot by adding a title that directly states the main
takeaway, units of measurement in the y-axis label, and annotations to key points in
the scatterplot, including the two best race times that belong to Usain Bolt. In addi‐
tion, we add a horizontal reference line at 10 seconds to clarify that only times below
10 seconds are plotted, and we use a special symbol for the world record time to draw
the reader’s attention to this crucial point:

Adding Context | 269

https://oreil.ly/pxHr4
https://oreil.ly/pxHr4

These bits of context describe what we have plotted, help readers see the main take‐
away, and point out several interesting features in the data. The plot can now be a
useful part of a slideshow, technical report, or social media post. In our experience,
people who look at our data analyses remember our plots, not paragraphs of text or
equations. It’s important to go the extra mile and add context to the plots we prepare
for others.

In the next section, we move on to specifics on how to create plots using the plotly
Python package.

Creating Plots Using plotly
In this section, we cover the basics of the plotly Python package, the main tool we
use in this book to create plots.

270 | Chapter 11: Data Visualization

The plotly package has several advantages over other plotting libraries. It creates
interactive plots rather than static images. When you create a plot in plotly, you can
pan and zoom to see parts of the plot that are too small to see normally. You can also
hover over plot elements, like the symbols in a scatterplot, to see the raw data values.
Also, plotly can save plots using the SVG file format, which means that images
appear sharp even when zoomed in. If you’re reading this chapter in a PDF or paper
copy of the book, we used this feature to render plot images. Finally, it has a simple
“express” API for creating basic plots, which helps when you’re doing exploratory
analysis and want to quickly create many plots.

We go over the fundamentals of plotly in this section. We recommend using the
official plotly documentation if you encounter something that isn’t covered here.

Figure and Trace Objects
Every plot in plotly is wrapped in a Figure object. Figure objects keep track of what
to draw. For instance, a single Figure can draw a scatterplot on the left and a line plot
on the right. Figure objects also keep track of the plot layout, which includes the
plot’s size, title, legend, and annotations.

The plotly.express module provides a concise API for making plots:

import plotly.express as px

We use plotly.express in the following code to make a scatterplot of weight against
height for the data on dog breeds. Notice that the return value from .scatter() is a
Figure object:

fig = px.scatter(
 dogs, x="height", y="weight",
 labels=dict(height="Height (cm)", weight="Weight (kg)"),
 width=350, height=250,
)

fig.__class__

plotly.graph_objs._figure.Figure

Displaying a Figure object renders it to the screen:

fig

Creating Plots Using plotly | 271

https://plotly.com/python

This particular Figure holds one plot, but Figure objects can hold any number of
plots. Here, we create a facet of three scatterplots:

The plot titles are cut off; we'll fix them in the next snippet
px.scatter(dogs, x='height', y='weight',
 facet_col='size',
 labels=dict(height="Height (cm)", weight="Weight (kg)"),
 width=550, height=250)

These three plots are stored in Trace objects. However, we try to avoid manipulating
Trace objects manually. Instead, plotly provides functions that automatically create
faceted subplots, like the px.scatter function we used here. Now that we have seen
how to make a simple plot, we next show how to modify plots.

272 | Chapter 11: Data Visualization

Modifying Layout
We often need to change a figure’s layout. For instance, we might want to adjust the
figure’s margins or the axis range. We can use the Figure.update_layout() method
to do this. In the facet scatterplot that we made, the title is cut off because the plot
doesn’t have large enough margins. We can correct this with Figure.update_lay
out():

fig = px.scatter(dogs, x='height', y='weight',
 facet_col='size',
 labels=dict(height="Height (cm)", weight="Weight (kg)"),
 width=550, height=250)

fig.update_layout(margin=dict(t=40))
fig

The .update_layout() method lets us modify any property of a layout. This includes
the plot title (title), margins (margins dictionary), and whether to display a legend
(showlegend). The plotly documentation has the full list of layout properties.

Figure objects also have .update_xaxes() and .update_yaxes() functions, which
are similar to .update_layout(). These two functions let us modify properties of the
axes, like the axis limits (range), number of ticks (nticks), and axis label (title).
Here, we adjust the range of the y-axis and change the title on the x-axis. We also add
a title to the plot and update the layout so that the title is not cut off:

fig = px.scatter(
 dogs, x="weight", y="longevity",
 title="Smaller dogs live longer",
 width=350, height=250,
)

fig.update_yaxes(range=[5, 18], title="Typical lifespan (yr)")
fig.update_xaxes(title="Average weight (kg)")

Creating Plots Using plotly | 273

https://oreil.ly/aBLxx

fig.update_layout(margin=dict(t=30))
fig

The plotly package comes with many plotting methods; we describe several of them
in the next section.

Plotting Functions
The plotly methods includes line plots, scatterplots, bar plots, box plots, and histo‐
grams. The API is similar for each type of plot. The dataframe is the first argument.
Then we can specify a column of the dataframe to place on the x-axis and a column
to place on the y-axis using the x and y keyword arguments.

We begin with a line plot of median time each year for the runners in the Cherry
Blossom race:

px.line(medians, x='year', y='time', width=350, height=250)

274 | Chapter 11: Data Visualization

Next, we make a bar plot of average longevity for different size dog breeds:

lifespans = dogs.groupby('size')['longevity'].mean().reset_index()

px.bar(lifespans, x='size', y='longevity',
 width=350, height=250)

Plotting methods in plotly also contain arguments for making facet plots. We can
facet using color on the same plot, plotting symbol, or line style. Or we can facet into
multiple subplots. Following are examples of each. We first make a scatterplot of
height and weight of dog breeds and use different plotting symbols and colors to facet
within the plot by size:

fig = px.scatter(dogs, x='height', y='weight',
 color='size', symbol='size',
 labels=dict(height="Height (cm)",
 weight="Weight (kg)", size="Size"),
 width=350, height=250)
fig

Creating Plots Using plotly | 275

The next plot shows side-by-side histograms of longevity for each breed size. Here we
facet by columns:

fig = px.histogram(dogs, x='longevity', facet_col='size',
 width=550, height=250)
fig.update_layout(margin=dict(t=30))

For the complete list of plotting functions, see the main documentation for plotly or
plotly.express, the submodule of plotly that we primarily use in the book.

To add context to a plot, we use the plotly annotation methods; these are described
next.

Annotations
The Figure.add_annotation() method places annotations on a plotly figure. These
annotations are line segments with text and an optional arrow. The location of the

276 | Chapter 11: Data Visualization

https://oreil.ly/GxvpT
https://oreil.ly/DhU9j

arrow is set using the x and y parameters, and we can shift the text from its default
position using the ax and ay parameters. Here, we annotate the scatter diagram with
information about one of the points:

 fig = px.scatter(dogs, x='weight', y='longevity',
 labels=dict(weight="Weight (kg)",
 longevity="Typical lifespan (yr)"),
 width=350, height=250)

 fig.add_annotation(text='Chihuahuas live 16.5 years on average!',
 x=2, y=16.5,
 ax=30, ay=5,
 xshift=3,
 xanchor='left')
 fig

This section covered the basics of creating plots using the plotly Python package.
We introduced the Figure object, which is the object plotly uses to store plots and
their layouts. We covered the basic plot types that plotly makes available, and a few
ways to customize plots by adjusting the layout and axes and by adding annotations.
In the next section, we briefly compare plotly to other common tools for creating
visualizations in Python.

Other Tools for Visualization
There are many software packages and tools for creating data visualizations. In this
book, we primarily use plotly. But it’s worth knowing about a few other commonly

Other Tools for Visualization | 277

used tools. In this section, we compare plotly to matplotlib and to the grammar of
graphics tools.

matplotlib
The library matplotlib is one of the first data visualization tools created for Python.
Because of this, it is widely used and has a large ecosystem of packages. Notably, the
built-in plotting methods for pandas DataFrames make plots using matplotlib. One
popular package that builds on top of matplotlib is called seaborn. Compared to
matplotlib alone, seaborn provides a much simpler API to create statistical plots,
like dot plots with confidence intervals. In fact, seaborn’s API was used as an inspira‐
tion for plotly’s API. If you look at plotly code and seaborn code side by side,
you’ll find that the methods to create basic plots use similar code.

One advantage of using matplotlib is its popularity. It’s relatively easy to find help
creating or fine-tuning plots online because many existing projects use it. For this
book, the main advantage of using plotly is that the plots we create are interactive.
Plots in matplotlib are usually static images, which don’t allow for panning, zoom‐
ing, or hovering over marks. Still, we expect that matplotlib will continue to be used
for data analyses. In fact, several of the plots in this book were made using seaborn
and matplotlib because plotly doesn’t yet support all the plots we want to make.

Grammar of Graphics
The grammar of graphics is a theory developed by Lee Wilkinson for creating data
visualizations. The basic idea is to use common building blocks for making plots. For
instance, a bar plot and a dot plot are nearly identical, except that a bar plot draws
rectangles and a dot plot draws points. This idea is captured in the grammar of
graphics, which would say that a bar plot and a dot plot differ only in their “geome‐
try” component. The grammar of graphics is an elegant system that we can use to
describe nearly every kind of plot we wish to make.

This system is implemented in the popular plotting libraries ggplot2 for the R pro‐
gramming language and Vega for JavaScript. Vega-Altair, a Python package, pro‐
vides a way to create Vega plots using Python, and we encourage interested readers to
look over its documentation.

Using a grammar of graphics tool like Vega-Altair enables flexibility in visualiza‐
tions. And like plotly, altair also creates interactive visualizations. However, the
Python API for these tools can be less straightforward than plotly’s API. In this
book, we don’t typically need plots outside of what plotly is capable of creating, so
we have opted for plotly’s simpler API.

278 | Chapter 11: Data Visualization

https://matplotlib.org/
https://seaborn.pydata.org
https://dl.acm.org/doi/book/10.5555/1088896
https://ggplot2.tidyverse.org
https://vega.github.io/vega
https://altair-viz.github.io

There are many more plotting tools for Python that we’ve left out for brevity. But for
the purposes of this book, relying on plotly provides a useful balance of interactivity
and flexibility.

Summary
When we analyze a dataset, we use visualizations to uncover patterns in the data that
are difficult to detect otherwise. Data visualization is an iterative process. We create a
plot, then decide whether to make adjustments or choose an entirely new type of plot.
This chapter covered principles that we use to make these decisions.

We started by covering principles of scale, and saw how adjusting the scale by chang‐
ing or transforming plot axes can reveal hidden structure in the data. We then dis‐
cussed smoothing and aggregating techniques that help us work with large datasets
that would otherwise result in overplotting. To facilitate meaningful comparisons, we
applied principles of perception, like aligning baselines to make lines, bars, and
points easier to compare. We showed how to take the data design into account to
improve visualizations. And we saw how adding context to a plot helps a reader
understand our message.

After this chapter, you should be able to create a plot and understand what kinds of
adjustments would make the plot more effective. As you learn how to make informa‐
tive visualizations, be patient and iterate. None of us make the perfect plot on the first
try, and as we make discoveries in an analysis, we continue to refine our plots. Then,
when it comes time to present our findings to others, we sift through our work to get
the few plots that best convince our future reader of the correctness and importance
of our analysis. This can even lead to the creation of a new plot that better conveys
our findings, which we iteratively develop.

In the next chapter, we walk through an extended case study that combines every‐
thing we’ve learned in the book so far. We hope that you find yourself surprised by
how much you can already do.

Summary | 279

CHAPTER 12

Case Study: How Accurate Are
Air Quality Measurements?

California is prone to wildfires, so much so that its residents (like the authors of this
book) sometimes say that California is “always on fire.” In 2020, 40 separate fires cov‐
ered the state in smoke, forced thousands of people to evacuate, and caused more
than $12 billion in damages (Figure 12-1).

Figure 12-1. Satellite image from August 2020 showing smoke covering California
(image from Wikipedia licensed under CC BY-SA 3.0 IGO)

In places like California, people use air quality measurements to learn what kinds of
protective measures they need to take. Depending on conditions, people may wish to
wear a mask, use air filters, or avoid going outside altogether.

In the US, one important source of air quality information is the Air Quality System
(AQS), run by the US government. AQS places high-quality sensors at locations
across the US and makes their data available to the public. These sensors are carefully

281

https://oreil.ly/CrDld
https://www.epa.gov/aqs

calibrated to strict standards—in fact, the AQS sensors are generally seen as the gold
standard for accuracy. However, they have a few downsides. The sensors are expen‐
sive: typically between $15,000 and $40,000 each. This means that there are fewer
sensors, and they are farther apart. Someone living far away from a sensor might not
be able to access AQS data for their personal use. Also, AQS sensors do not provide
real-time data. Since the data undergo extensive calibration, they are only released
hourly and have a time lag of one to two hours. In essence, the AQS sensors are accu‐
rate but not timely.

In contrast, PurpleAir sensors, which we introduced in Chapter 3, sell for about $250
and can be easily installed at home. With the lower price point, thousands of people
across the US have purchased these sensors for personal use. The sensors can connect
to a home WiFi network so that air quality can be easily monitored, and they can
report data back to PurpleAir. In 2020, thousands of owners of PurpleAir sensors
made their sensors’ measurements publicly available. Compared to the AQS sensors,
PurpleAir sensors are timelier. They report measurements every two minutes rather
than every hour. Since there are more deployed PurpleAir sensors, more people live
close enough to a sensor to make use of the data. However, PurpleAir sensors are less
accurate. To make the sensors affordable, PurpleAir uses a simpler method to count
particles in the air. This means that PurpleAir measurements can report that air qual‐
ity is worse than it really is (see Josh Hug’s blog post). In essence, PurpleAir sensors
tend to be timely but less accurate.

In this chapter, we plan to use the AQS sensor measurements to improve the Pur‐
pleAir measurements. It’s a big task, and we follow the analysis first developed by
Karoline Barkjohn, Brett Gantt, and Andrea Clements from the US Environmental
Protection Agency. Barkjohn and her colleagues’ work was so successful that, as of
this writing, the official US government maps, like the AirNow Fire and Smoke map,
include both AQS and PurpleAir sensors and apply Barkjohn’s correction to the Pur‐
pleAir data.

Our work follows the data science lifecycle, beginning with considering the question
and the scope of the available data. Much of our effort is spent cleaning and wran‐
gling the data into shape for analysis, but we also carry out an exploratory data analy‐
sis and build a model for generalization. We begin by considering the question and
the design and scope of the data.

Question, Design, and Scope
Ideally, measures of air quality should be both accurate and timely. Inaccurate or
biased measurements can mean people do not take air quality as seriously as they
should. Delayed alerts can expose people to harmful air. The context provided in the
introduction about the popularity of inexpensive air quality sensors got us wondering
about their quality and usefulness.

282 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

https://www2.purpleair.com
https://oreil.ly/ZH5aj
https://oreil.ly/XPxZu
https://fire.airnow.gov

Two different kinds of instruments measure a natural phenomenon—the amount of
particulate matter in the air. The AQS sensor has the advantage of small measurement
error and negligible bias (see Chapter 2). On the other hand, the PurpleAir instru‐
ment is less accurate; the measurements have greater variability and are also biased.
Our initial question is: can we use the AQS measurements to make the PurpleAir
measurements better?

We are in the situation where we have a lot of data available to us. We have access to a
small number of high-quality measurements from AQS, and we can get data from
thousands of PurpleAir sensors. To narrow the focus of our question, we consider
how we might use these two sources of data to improve PurpleAir measurements.

The data from these two sources includes the locations of the sensors. So we can try
to pair them up, finding a PurpleAir sensor close to each AQS sensor. If they’re close,
then these sensors are essentially measuring the same air. We can treat the AQS sen‐
sors as the ground truth (because they are so accurate) and study the variation in the
PurpleAir measurements given the true air quality.

Even though there are relatively few pairs of collocated AQS and PurpleAir sensors, it
seems reasonable to generalize any relationship we find to other PurpleAir sensors. If
there’s a simple relationship between AQS and PurpleAir measurements, then we can
use this relationship to adjust measurements from any PurpleAir sensor so that they
are more accurate.

We have narrowed down our question quite a bit: can we model the relationship
between PurpleAir sensor readings and neighboring AQS sensor readings? If yes,
then hopefully we can use the model to improve PurpleAir readings. Spoiler alert:
indeed we can!

This case study nicely integrates the concepts introduced in this part of the book. It
gives us an opportunity to see how data scientists wrangle, explore, and visualize data
in a real-world setting. In particular, we see how a large, less-accurate dataset can
amplify the usefulness of a small, accurate dataset. Combining large and small data‐
sets like this is particularly exciting to data scientists and applies broadly to other
domains ranging from social science to medicine.

In the next section, we begin our wrangling by finding the pairs of AQS and Pur‐
pleAir sensors that are near each other. We focus specifically on readings for PM2.5
particles, which are particles that are smaller than 2.5 micrometers in diameter. These
particles are small enough to be inhaled into the lungs, pose the greatest risk to
health, and are especially common in wood smoke.

Question, Design, and Scope | 283

Finding Collocated Sensors
Our analysis begins by finding collocated pairs of AQS and PurpleAir sensors—sen‐
sors that are placed essentially next to each other. This step is important because it
lets us reduce the effects of other variables that might cause differences in sensor
readings. Consider what would happen if we compared an AQS sensor placed in a
park with a PurpleAir sensor placed along a busy freeway. The two sensors would
have different readings, in part because the sensors are exposed to different environ‐
ments. Ensuring that sensors are truly collocated lets us claim the differences in sen‐
sor readings are due to how the sensors are built and to small, localized air
fluctuations, rather than other potential confounding variables.

Barkjohn’s analysis conducted by the EPA group found pairs of AQS and PurpleAir
sensors that are installed within 50 meters of each other. The group contacted each
AQS site to see whether the PurpleAir sensor was also maintained there. This extra
effort gave them confidence that their sensor pairs were truly collocated.

In this section, we explore and clean location data from AQS and PurpleAir. Then we
perform a join of sorts to construct a list of potentially collocated sensors. We won’t
contact AQS sites ourselves; instead, we proceed in later sections with Barkjohn’s list
of confirmed collocated sensors.

We downloaded a list of AQS and PurpleAir sensors and saved the data in the files
data/list_of_aqs_sites.csv and data/list_of_purpleair_sensors.json. Let’s begin by read‐
ing these files into pandas DataFrames. First, we check file sizes to see whether they
are reasonable to load into memory:

!ls -lLh data/list_of*

-rw-r--r-- 1 sam staff 4.8M Oct 27 16:54 data/list_of_aqs_sites.csv
-rw-r--r-- 1 sam staff 3.8M Oct 22 16:10 data/list_of_purpleair_sensors.json

Both files are relatively small. Let’s start with the list of AQS sites.

Wrangling the List of AQS Sites
We have filtered the AQS map of sites to show only the AQS sites that measure
PM2.5, and then downloaded the list of sites as a CSV file using the map’s web app.
Now we can load it into a pandas DataFrame:

aqs_sites_full = pd.read_csv('data/list_of_aqs_sites.csv')
aqs_sites_full.shape

(1333, 28)

There are 28 columns in the table. Let’s check the column names:

aqs_sites_full.columns

284 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

https://oreil.ly/EkZcB

Index(['AQS_Site_ID', 'POC', 'State', 'City', 'CBSA', 'Local_Site_Name',
 'Address', 'Datum', 'Latitude', 'Longitude', 'LatLon_Accuracy_meters',
 'Elevation_meters_MSL', 'Monitor_Start_Date', 'Last_Sample_Date',
 'Active', 'Measurement_Scale', 'Measurement_Scale_Definition',
 'Sample_Duration', 'Sample_Collection_Frequency',
 'Sample_Collection_Method', 'Sample_Analysis_Method',
 'Method_Reference_ID', 'FRMFEM', 'Monitor_Type', 'Reporting_Agency',
 'Parameter_Name', 'Annual_URLs', 'Daily_URLs'],
 dtype='object')

To find out which columns are most useful for us, we reference the data dictionary
that the AQS provides on its website. There we confirm that the data table contains
information about the AQS sites. So we might expect the granularity corresponds to
an AQS site, meaning each row represents a single site and the column labeled
AQS_Site_ID is the primary key. We can confirm this with a count of records for each
ID:

aqs_sites_full['AQS_Site_ID'].value_counts()

06-071-0306 4
19-163-0015 4
39-061-0014 4
 ..
46-103-0020 1
19-177-0006 1
51-680-0015 1
Name: AQS_Site_ID, Length: 921, dtype: int64

It looks like some sites appear multiple times in this dataframe. Unfortunately, this
means that the granularity is finer than the individual site level. To figure out why
sites are duplicated, let’s take a closer look at the rows for one duplicated site:

dup_site = aqs_sites_full.query("AQS_Site_ID == '19-163-0015'")

We select a few columns to examine based on their names—those that sound like they
might shed some light on the reason for duplicates:

some_cols = ['POC', 'Monitor_Start_Date',
 'Last_Sample_Date', 'Sample_Collection_Method']
dup_site[some_cols]

 POC Monitor_Start_Date Last_Sample_Date Sample_Collection_Method
458 1 1/27/1999 8/31/2021 R & P Model 2025 PM-2.5 Sequential Air Sampler...
459 2 2/9/2013 8/26/2021 R & P Model 2025 PM-2.5 Sequential Air Sampler...
460 3 1/1/2019 9/30/2021 Teledyne T640 at 5.0 LPM
461 4 1/1/2019 9/30/2021 Teledyne T640 at 5.0 LPM

Finding Collocated Sensors | 285

https://oreil.ly/GvMPI

The POC column looks to be useful for distinguishing between rows in the table. The
data dictionary states this about the column:

This is the “Parameter Occurrence Code” used to distinguish different instruments that
measure the same parameter at the same site.

So, the site 19-163-0015 has four instruments that all measure PM2.5. The granular‐
ity of the dataframe is at the level of a single instrument.

Since our aim is to match AQS and PurpleAir sensors, we can adjust the granularity
by selecting one instrument from each AQS site. To do this, we group rows according
to site ID, then take the first row in each group:

def rollup_dup_sites(df):
 return (
 df.groupby('AQS_Site_ID')
 .first()
 .reset_index()
)

aqs_sites = (aqs_sites_full
 .pipe(rollup_dup_sites))
aqs_sites.shape

(921, 28)

Now the number of rows matches the number of unique IDs.

To match AQS sites with PurpleAir sensors, we only need the site ID, latitude, and
longitude. So we further adjust the structure and keep only those columns:

def cols_aqs(df):
 subset = df[['AQS_Site_ID', 'Latitude', 'Longitude']]
 subset.columns = ['site_id', 'lat', 'lon']
 return subset

aqs_sites = (aqs_sites_full
 .pipe(rollup_dup_sites)
 .pipe(cols_aqs))

Now the aqs_sites dataframe is ready, and we move to the PurpleAir sites.

Wrangling the List of PurpleAir Sites
Unlike the AQS sites, the file containing PurpleAir sensor data comes in a JSON for‐
mat. We address this format in more detail in Chapter 14. For now, we use shell tools
(see Chapter 8) to peek at the file contents:

!head data/list_of_purpleair_sensors.json | cut -c 1-60

{"version":"7.0.30",
"fields":
["ID","pm","pm_cf_1","pm_atm","age","pm_0","pm_1","pm_2","pm
"data":[

286 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

[20,0.0,0.0,0.0,0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,97,0.0,0.0,0.0
[47,null,null,null,4951,null,null,null,null,null,null,null,9
[53,0.0,0.0,0.0,0,0.0,0.0,0.0,0.0,1.2,5.2,6.0,97,0.0,0.5,702
[74,0.0,0.0,0.0,0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,97,0.0,0.0,0.0
[77,9.8,9.8,9.8,1,9.8,10.7,11.0,11.2,13.8,15.1,15.5,97,9.7,9
[81,6.5,6.5,6.5,0,6.5,6.1,6.1,6.6,8.1,8.3,9.7,97,5.9,6.8,405

From the first few lines of the file, we can guess that the data are stored in the "data"
key and the column labels in the "fields" key. We can use Python’s json library to
read in the file as a Python dict:

import json

with open('data/list_of_purpleair_sensors.json') as f:
 pa_json = json.load(f)

list(pa_json.keys())

['version', 'fields', 'data', 'count']

We can create a dataframe from the values in data and label the columns with the
content of fields:

pa_sites_full = pd.DataFrame(pa_json['data'], columns=pa_json['fields'])
pa_sites_full.head()

 ID pm pm_cf_1 pm_atm ... Voc Ozone1 Adc CH
0 20 0.0 0.0 0.0 ... NaN NaN 0.01 1
1 47 NaN NaN NaN ... NaN 0.72 0.72 0
2 53 0.0 0.0 0.0 ... NaN NaN 0.00 1
3 74 0.0 0.0 0.0 ... NaN NaN 0.05 1
4 77 9.8 9.8 9.8 ... NaN NaN 0.01 1

5 rows × 36 columns

Like the AQS data, there are many more columns in this dataframe than we need:

pa_sites_full.columns

Index(['ID', 'pm', 'pm_cf_1', 'pm_atm', 'age', 'pm_0', 'pm_1', 'pm_2', 'pm_3',
 'pm_4', 'pm_5', 'pm_6', 'conf', 'pm1', 'pm_10', 'p1', 'p2', 'p3', 'p4',
 'p5', 'p6', 'Humidity', 'Temperature', 'Pressure', 'Elevation', 'Type',
 'Label', 'Lat', 'Lon', 'Icon', 'isOwner', 'Flags', 'Voc', 'Ozone1',
 'Adc', 'CH'],
 dtype='object')

In this case, we can guess that the columns we’re most interested in are the sensor IDs
(ID), sensor labels (Label), latitude (Lat), and longitude (Lon). But we did consult the
data dictionary on the PurpleAir website to double-check.

Now let’s check the ID column for duplicates, as we did for the AQS data:

Finding Collocated Sensors | 287

pa_sites_full['ID'].value_counts()[:3]

85829 1
117575 1
118195 1
Name: ID, dtype: int64

Since the value_counts() method lists the counts in descending order, we can see
that every ID was included only once. So we have verified the granularity is at the
individual sensor level. Next, we keep only the columns needed to match sensor loca‐
tions from the two sources:

def cols_pa(df):
 subset = df[['ID', 'Label', 'Lat', 'Lon']]
 subset.columns = ['id', 'label', 'lat', 'lon']
 return subset

pa_sites = (pa_sites_full
 .pipe(cols_pa))
pa_sites.shape

(23138, 4)

Notice there are tens of thousands more PurpleAir sensors than AQS sensors. Our
next task is to find the PurpleAir sensor close to each AQS sensor.

Matching AQS and PurpleAir Sensors
Our goal is to match sensors in the two dataframes by finding a PurpleAir sensor
near each AQS instrument. We consider near to mean within 50 meters. This kind of
matching is a bit more challenging than the joins we’ve seen thus far. For instance, the
naive approach to use the merge method of pandas fails us:

aqs_sites.merge(pa_sites, left_on=['lat', 'lon'], right_on=['lat', 'lon'])

 site_id lat lon id label
0 06-111-1004 34.45 -119.23 48393 VCAPCD OJ

We cannot simply match instruments with the exact same latitude and longitude; we
need to find the PurpleAir sites that are close enough to the AQS instrument.

To figure out how far apart two locations are, we use a basic approximation: 111,111
meters in the north-south direction roughly equals one degree of latitude, and
111,111 * cos(latitude) in the east-west direction corresponds to one degree of

288 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

1 This estimation works by assuming that the Earth is perfectly spherical. Then, one degree of latitude is the
radius of the Earth in meters. Plugging in the average radius of the Earth gives 111,111 meters per degree of
latitude. Longitude is the same, but the radius of each “ring” around the Earth decreases as we get closer to the
poles, so we adjust by a factor of cos lat . It turns out that the Earth isn’t perfectly spherical, so these estima‐
tions can’t be used for precise calculations, like landing a rocket. But for our purposes, they do just fine.

longitude.1 So we can find the latitude and longitude ranges that correspond to 25
meters in each direction (to make a 50-meter-by-50-meter rectangle around each
point):

magic_meters_per_lat = 111_111
offset_in_m = 25
offset_in_lat = offset_in_m / magic_meters_per_lat
offset_in_lat

0.000225000225000225

To simplify even more, we use the median latitude for the AQS sites:

median_latitude = aqs_sites['lat'].median()
magic_meters_per_lon = 111_111 * np.cos(np.radians(median_latitude))
offset_in_lon = offset_in_m / magic_meters_per_lon
offset_in_lon

0.000291515219937587

Now we can match coordinates to within the offset_in_lat and offset_in_lon.
Doing this in SQL is much easier than in pandas, so we push the tables into a tempo‐
rary SQLite database, then run a query to read the tables back into a dataframe:

import sqlalchemy

db = sqlalchemy.create_engine('sqlite://')

aqs_sites.to_sql(name='aqs', con=db, index=False)
pa_sites.to_sql(name='pa', con=db, index=False)

query = f'''
SELECT
 aqs.site_id AS aqs_id,
 pa.id AS pa_id,
 pa.label AS pa_label,
 aqs.lat AS aqs_lat,
 aqs.lon AS aqs_lon,
 pa.lat AS pa_lat,
 pa.lon AS pa_lon
FROM aqs JOIN pa
 ON pa.lat - {offset_in_lat} <= aqs.lat
 AND aqs.lat <= pa.lat + {offset_in_lat}
 AND pa.lon - {offset_in_lon} <= aqs.lon
 AND aqs.lon <= pa.lon + {offset_in_lon}
'''

Finding Collocated Sensors | 289

matched = pd.read_sql(query, db)
matched

 aqs_id pa_id pa_label aqs_lat aqs_lon pa_lat pa_lon
0 06-019-0011 6568 IMPROVE_FRES2 36.79 -119.77 36.79 -119.77
1 06-019-0011 13485 AMTS_Fresno 36.79 -119.77 36.79 -119.77
2 06-019-0011 44427 Fresno CARB CCAC 36.79 -119.77 36.79 -119.77
...
146 53-061-1007 3659 Marysville 7th 48.05 -122.17 48.05 -122.17
147 53-063-0021 54603 Augusta 1 SRCAA 47.67 -117.36 47.67 -117.36
148 56-021-0100 50045 WDEQ-AQD Cheyenne NCore 41.18 -104.78 41.18 -104.78

149 rows × 7 columns

We’ve achieved our goal—we matched 149 AQS sites with PurpleAir sensors. Our
wrangling of the locations is complete, and we turn to the task of wrangling and
cleaning the sensor measurements. We start with the measurements taken from an
AQS site.

Wrangling and Cleaning AQS Sensor Data
Now that we have located sensors that are near each other, we are ready to wrangle
and clean the files that contain the measurement data for these sites. We demonstrate
the tasks involved with one AQS instrument and its matching PurpleAir sensor. We
picked a pair located in Sacramento, California. The AQS sensor ID is 06-067-0010,
and the PurpleAir sensor name is AMTS_TESTINGA.

The AQS provides a website and API to download sensor data. We downloaded the
daily measurements from May 20, 2018, to December 29, 2019, into the data/
aqs_06-067-0010.csv file. Let’s begin by loading this file into a dataframe:

aqs_full = pd.read_csv('data/aqs_06-067-0010.csv')
aqs_full.shape

(2268, 31)

From the data dictionary, we find out that the column called arithmetic_mean corre‐
sponds to the actual PM2.5 measurements. Some AQS sensors take a measurement
every hour. For our analysis, we downloaded the 24-hour averages (the arithmetic
mean) of the hourly sensor measurements.

Let’s carry out some quality checks and clean the data where necessary. We focus on
checks related to scope and quality of values:

1. Check and correct the granularity of the data.
2. Remove unneeded columns.

290 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

https://oreil.ly/tl_nc
https://oreil.ly/e1PjI

3. Check values in the date_local column.
4. Check values in the arithmetic_mean column.

For the sake of brevity, we’ve chosen a few important quality checks that specifically
reinforce ideas we’ve covered in data wrangling, EDA, and visualization.

Checking Granularity
We would like each row of our data to correspond to a single date with an average
PM2.5 reading for that date. As we saw earlier, a simple way to check is to see whether
there are repeat values in the date_local column:

aqs_full['date_local'].value_counts()

date_local
2019-01-03 12
2018-12-31 12
2018-12-28 12
 ..
2018-11-28 12
2018-11-25 12
2018-11-22 12
Name: count, Length: 189, dtype: int64

Indeed, there are 12 rows for each date, so the granularity is not at the individual date
level.

From the data dictionary, we learn that there are multiple standards for computing
the final measurements from the raw sensor data. The pollutant_standard column
contains the name of each standard. The event_type column marks whether data
measured during “exceptional events” are included in the measurement. Let’s check
how different these average values are by calculating the range of 12 measurements:

(aqs_full
 .groupby('date_local')
 ['arithmetic_mean']
 .agg(np.ptp) # np.ptp computes max() - min()
 .value_counts()
)

arithmetic_mean
0.0 189
Name: count, dtype: int64

For all 189 dates, the max PM2.5–min PM2.5 is 0. This means that we can simply take
the first PM2.5 measurement for each date:

def rollup_dates(df):
 return (
 df.groupby('date_local')
 .first()

Wrangling and Cleaning AQS Sensor Data | 291

 .reset_index()
)

aqs = (aqs_full
 .pipe(rollup_dates))
aqs.shape

(189, 31)

This data-cleaning step gives us the desired granularity: each row represents a single
date, with an average PM2.5 measurement for that date. Next, we further modify the
structure of the dataframe and drop unneeded columns.

Removing Unneeded Columns
We plan to match the PM2.5 measurements in the AQS dataframe with the PurpleAir
PM2.5 measurements for each date. To simplify the structure, we can drop all but the
date and PM2.5 columns. We also rename the PM2.5 column so that it’s easier to
understand:

def drop_cols(df):
 subset = df[['date_local', 'arithmetic_mean']]
 return subset.rename(columns={'arithmetic_mean': 'pm25'})

aqs = (aqs_full
 .pipe(rollup_dates)
 .pipe(drop_cols))
aqs.head()

 date_local pm25
0 2018-05-20 6.5
1 2018-05-23 2.3
2 2018-05-29 11.8
3 2018-06-01 6.0
4 2018-06-04 8.0

Now that we have the desired shape for our data table, we turn to checking the data
values.

Checking the Validity of Dates
Let’s take a closer look at the dates. We have already seen that there are gaps when
there are no PM2.5 readings, so we expect there are missing dates. Let’s parse the
dates as timestamp objects to make it easier to figure out which dates are missing. As
we did in Chapter 9, we check the format:

aqs['date_local'].iloc[:3]

0 2018-05-20
1 2018-05-23

292 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

2 2018-05-29
Name: date_local, dtype: object

The dates are represented as YYYY-MM-DD, so we describe the format in the Python
representation '%Y-%m-%d'. To parse the dates, we use the pd.to_datetime() func‐
tion, and we reassign the date_local column as pd.TimeStamps:

def parse_dates(df):
 date_format = '%Y-%m-%d'
 timestamps = pd.to_datetime(df['date_local'], format=date_format)
 return df.assign(date_local=timestamps)

aqs = (aqs_full
 .pipe(rollup_dates)
 .pipe(drop_cols)
 .pipe(parse_dates))

The method runs without erroring, indicating that all the strings matched the format.

Just because the dates can be parsed doesn’t mean that the dates are
immediately ready to use for further analysis. For instance, the
string 9999-01-31 can be parsed into a pd.TimeStamp, but the date
isn’t valid.

Now that the dates have been converted to timestamps, we can calculate how many
dates are missing. We find the number of days between the earliest and latest dates—
this corresponds to the maximum number of measurements we could have recorded:

date_range = aqs['date_local'].max() - aqs['date_local'].min()
date_range.days

588

Subtracting timestamps gives Timedelta objects, which as we see have a few useful
properties. There are many dates missing from the data. However, when we combine
these data for this sensor with other sensors, we expect to have enough data to fit a
model.

Our final wrangling step is to check the quality of the PM2.5 measurements.

Checking the Quality of PM2.5 Measurements
Particulate matter is measured in micrograms per cubic meter of air (µg/m3). (There
are 1 million micrograms in 1 gram, and 1 pound is equal to about 450 grams.) The
EPA has set a standard of 35 µg/m3 for a daily average of PM2.5 and 12 µg/m3 for an
annual average. We can use this information to make a few basic checks on the PM2.5
measurements. First, PM2.5 can’t go below 0. Second, we can look for abnormally
high PM2.5 values and see whether they correspond to major events like a wildfire.

Wrangling and Cleaning AQS Sensor Data | 293

https://oreil.ly/XqVqG

One visual way to perform these checks is to plot the PM2.5 measurement against the
date:

px.scatter(aqs, x='date_local', y='pm25',
 labels={'date_local':'Date', 'pm25':'AQS daily avg PM2.5'},
 width=500, height=250)

We see that the PM2.5 measurements don’t go below 0 and are typically lower than
the EPA level. We also found a large spike in PM2.5 around mid-November of 2018.
This sensor is located in Sacramento, so we can check if there was a fire around that
area.

Indeed, November 8, 2018, marks the start of the Camp Fire, the “deadliest and most
destructive wildfire in California history” (see the Camp Fire page managed by the
US Census Bureau). The fire started just 80 miles north of Sacramento, so this AQS
sensor captured the dramatic spike in PM2.5.

We’ve cleaned and explored the data for one AQS sensor. In the next section, we do
the same for its collocated PurpleAir sensor.

Wrangling PurpleAir Sensor Data
In the previous section, we analyzed data from AQS site 06-067-0010. The matching
PurpleAir sensor is named AMTS_TESTINGA, and we’ve used the PurpleAir website to
download the data for this sensor into the data/purpleair_AMTS folder:

!ls -alh data/purpleair_AMTS/* | cut -c 1-72

-rw-r--r-- 1 nolan staff 50M Jan 25 16:35 data/purpleair_AMTS/AMTS_
-rw-r--r-- 1 nolan staff 50M Jan 25 16:35 data/purpleair_AMTS/AMTS_
-rw-r--r-- 1 nolan staff 48M Jan 25 16:35 data/purpleair_AMTS/AMTS_
-rw-r--r-- 1 nolan staff 50M Jan 25 16:35 data/purpleair_AMTS/AMTS_

There are four CSV files. Their names are quite long, and the beginning of each is
identical. The data dictionary for the PurpleAir data says that each sensor has two

294 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

https://oreil.ly/tqxtH

separate instruments, A and B, that each record data. Note that the PurpleAir site we
used to collect these data and the accompanying data dictionary has been downgra‐
ded. The data are now available through a REST API. The site that documents the
API also contains information about the fields. (The topic of REST is covered in
Chapter 14.) Let’s examine the later portions of the filenames:

!ls -alh data/purpleair_AMTS/* | cut -c 73-140

TESTING (outside) (38.568404 -121.493163) Primary Real Time 05_20_20
TESTING (outside) (38.568404 -121.493163) Secondary Real Time 05_20_
TESTING B (undefined) (38.568404 -121.493163) Primary Real Time 05_2
TESTING B (undefined) (38.568404 -121.493163) Secondary Real Time 05

We can see that the first two CSV files correspond to instrument A and the last two to
B. Having two instruments is useful for data cleaning; if A and B disagree about a
measurement, we might question the integrity of the measurement and decide to
remove it.

The data dictionary also mentions that each instrument records Primary and Secon‐
dary data. The Primary data contains the fields we’re interested in: PM2.5, tempera‐
ture, and humidity. The Secondary data contains data for other particle sizes, like
PM1.0 and PM10. So we work only with the Primary files.

Our tasks are similar to those of the previous section, with the addition of addressing
readings from two instruments.

We begin by loading in the data. When CSV files have long names, we can assign the
filenames into a Python variable to more easily load the files:

from pathlib import Path

data_folder = Path('data/purpleair_AMTS')
pa_csvs = sorted(data_folder.glob('*.csv'))
pa_csvs[0]

PosixPath('data/purpleair_AMTS/AMTS_TESTING (outside) (38.568404 -121.493163)
Primary Real Time 05_20_2018 12_29_2019.csv')

pa_full = pd.read_csv(pa_csvs[0])
pa_full.shape

(672755, 11)

Let’s look at the columns to see which ones we need:

pa_full.columns

Index(['created_at', 'entry_id', 'PM1.0_CF1_ug/m3', 'PM2.5_CF1_ug/m3',
 'PM10.0_CF1_ug/m3', 'UptimeMinutes', 'RSSI_dbm', 'Temperature_F',
 'Humidity_%', 'PM2.5_ATM_ug/m3', 'Unnamed: 10'],
 dtype='object')

Wrangling PurpleAir Sensor Data | 295

https://oreil.ly/WSciR
https://oreil.ly/WSciR

Although we’re interested in PM2.5, it appears there are two columns that contain
PM2.5 data: PM2.5_CF1_ug/m3 and PM2.5_ATM_ug/m3. We investigate the difference
between these two columns to find that PurpleAir sensors use two different methods
to convert a raw laser recording into a PM2.5 number. These two calculations corre‐
spond to the CF1 and ATM columns. Barkjohn found that using CF1 produced better
results than ATM, so we keep that column, along with the date, temperature, and rel‐
ative humidity:

def drop_and_rename_cols(df):
 df = df[['created_at', 'PM2.5_CF1_ug/m3', 'Temperature_F', 'Humidity_%']]
 df.columns = ['timestamp', 'PM25cf1', 'TempF', 'RH']
 return df

pa = (pa_full
 .pipe(drop_and_rename_cols))
pa.head()

 timestamp PM25cf1 TempF RH
0 2018-05-20 00:00:35 UTC 1.23 83.0 32.0
1 2018-05-20 00:01:55 UTC 1.94 83.0 32.0
2 2018-05-20 00:03:15 UTC 1.80 83.0 32.0
3 2018-05-20 00:04:35 UTC 1.64 83.0 32.0
4 2018-05-20 00:05:55 UTC 1.33 83.0 32.0

Next we check granularity.

Checking the Granularity
In order for the granularity of these measurements to match the AQS data, we want
one average PM2.5 for each date (a 24-hour period). PurpleAir states that sensors
take measurements every two minutes. Let’s double-check the granularity of the raw
measurements before we aggregate them to 24-hour periods.

To do this we convert the column containing the date information from strings to
pd.TimeStamp objects. The format of the date is different than the AQS format, which
we describe as '%Y-%m-%d %X %Z'. As we soon see, pandas has special support for
dataframes with an index of timestamps:

def parse_timestamps(df):
 date_format = '%Y-%m-%d %X %Z'
 times = pd.to_datetime(df['timestamp'], format=date_format)
 return (df.assign(timestamp=times)
 .set_index('timestamp'))

pa = (pa_full
 .pipe(drop_and_rename_cols)

296 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

 .pipe(parse_timestamps))
pa.head(2)

 PM25cf1 TempF RH

timestamp
2018-05-20 00:00:35+00:00 1.23 83.0 32.0
2018-05-20 00:01:55+00:00 1.94 83.0 32.0

Timestamps are tricky—notice that the original timestamps were given in the UTC
time zone. However, the AQS data were averaged according to the local time in Cali‐
fornia, which is either seven or eight hours behind UTC time, depending on whether
daylight saving time is in effect. This means we need to change the time zone of the
PurpleAir timestamps to match the local time zone. The df.tz_convert() method
operates on the index of the dataframe, which is one reason why we set the index of
pa to the timestamps:

def convert_tz(pa):
 return pa.tz_convert('US/Pacific')

pa = (pa_full
 .pipe(drop_and_rename_cols)
 .pipe(parse_timestamps)
 .pipe(convert_tz))
pa.head(2)

 PM25cf1 TempF RH

timestamp
2018-05-19 17:00:35-07:00 1.23 83.0 32.0
2018-05-19 17:01:55-07:00 1.94 83.0 32.0

If we compare the first two rows of this version of the dataframe to the previous one,
we see that the time has changed to indicate the seven-hour difference from UTC.

Visualizing timestamps can help us check the granularity of the data.

Visualizing timestamps
One way to visualize timestamps is to count how many appear in each 24-hour
period, then plot those counts over time. To group time-series data in pandas, we can
use the df.resample() method. This method works on dataframes that have an index
of timestamps. It behaves like df.groupby(), except that we can specify how we want
the timestamps to be grouped—we can group into dates, weeks, months, and many
more options (the D argument tells resample to aggregate timestamps into individual
dates):

Wrangling PurpleAir Sensor Data | 297

per_day = (pa.resample('D')
 .size()
 .rename('records_per_day')
 .to_frame()
)

percs = [10, 25, 50, 75, 100]
np.percentile(per_day['records_per_day'], percs, method='lower')

array([293, 720, 1075, 1440, 2250])

We see that the number of measurements in a day varies widely. A line plot of these
counts gives us a better sense of these variations:

px.line(per_day, x=per_day.index, y='records_per_day',
 labels={'timestamp':'Date', 'records_per_day':'Records per day'},
 width=550, height=250,)

This is a fascinating plot. We see clear gaps in the data where there are no measure‐
ments. It appears that significant portions of data in July 2018 and September 2019
are missing. Even when the sensor appears to be working, the number of measure‐
ments per day is slightly different. For instance, the plot is “bumpy” between August
and October 2018, where dates have a varying number of measurements. We need to
decide what we want to do with missing data. But perhaps more urgently: there are
strange “steps” in the plot. Some dates have around 1,000 readings, some around
2,000, some around 700, and some around 1,400. If a sensor takes measurements
every two minutes, there should be a maximum of 720 measurements per day. For a
perfect sensor, the plot would display a flat line at 720 measurements. This is clearly
not the case. Let’s investigate.

298 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

Checking the sampling rate
Deeper digging reveals that although PurpleAir sensors currently record data every
120 seconds, this was not always the case. Before May 30, 2019, sensors recorded data
every 80 seconds, or 1,080 points a day. The change in sampling rate does explain the
drop on May 30, 2019. Let’s next look at the time periods where there were many
more points than expected. This could mean that some measurements were duplica‐
ted in the data. We can check this by looking at the measurements for one day, say,
January 1, 2019. We pass a string into .loc to filter timestamps for that date:

len(pa.loc['2019-01-01'])

2154

There are almost double the 1,080 expected readings. Let’s check to see if readings are
duplicated:

pa.loc['2019-01-01'].index.value_counts()

2019-01-01 13:52:30-08:00 2
2019-01-01 12:02:21-08:00 2
2019-01-01 11:49:01-08:00 2
 ..
2019-01-01 21:34:10-08:00 2
2019-01-01 11:03:41-08:00 2
2019-01-01 04:05:38-08:00 2
Name: timestamp, Length: 1077, dtype: int64

Each timestamp appears exactly twice, and we can verify that all duplicated dates con‐
tain the same PM2.5 reading. Since this is also true for both temperature and humid‐
ity, we drop the duplicate rows from the dataframe:

def drop_duplicate_rows(df):
 return df[~df.index.duplicated()]

pa = (pa_full
 .pipe(drop_and_rename_cols)
 .pipe(parse_timestamps)
 .pipe(convert_tz)
 .pipe(drop_duplicate_rows))
pa.shape

(502628, 3)

To check, we remake the line plot of the number of records for a day, and this time we
shade the regions where the counts are supposed to be contained:

per_day = (pa.resample('D')
 .size().rename('records_per_day')
 .to_frame()
)

fig = px.line(per_day, x=per_day.index, y='records_per_day',
 labels={'timestamp':'Date', 'records_per_day':'Records per day'},

Wrangling PurpleAir Sensor Data | 299

 width=550, height=250)

fig.add_annotation(x='2019-07-24', y=720,
 text="720", showarrow=False, yshift=10)
fig.add_annotation(x='2019-07-24', y=1080,
 text="1080", showarrow=False, yshift=10)

fig.add_hline(y=1080, line_width=3, line_dash="dot", opacity=0.6)
fig.add_hline(y=720, line_width=3, line_dash="dot", opacity=0.6)
fig.add_vline(x="2019-05-30", line_width=3, line_dash="dash", opacity=0.6)

fig

After dropping duplicate dates, the plot of measurements per day looks much more
consistent with the counts we expect. Careful readers will see two spikes above the
maximum measurements around November of each year when daylight saving time
is no longer in effect. When clocks are rolled back one hour, that day has 25 hours
instead of the usual 24 hours. Timestamps are tricky!

But there are still missing measurements, and we need to decide what to do about
them.

Handling Missing Values
The plan is to create 24-hour averages of the measurements, but we don’t want to use
days when there are not enough measurements. We follow Barkjohn’s analysis and
only keep a 24-hour average if there are at least 90% of the possible points for that
day. Remember that before May 30, 2019, there are 1,080 possible points in a day, and
after that there are 720 possible points. We calculate the minimum number of meas‐
urements needed to keep per day:

needed_measurements_80s = 0.9 * 1080
needed_measurements_120s = 0.9 * 720

300 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

Now we can determine which of the days have enough measurements to keep:

cutoff_date = pd.Timestamp('2019-05-30', tz='US/Pacific')

def has_enough_readings(one_day):
 [n] = one_day
 date = one_day.name
 return (n >= needed_measurements_80s
 if date <= cutoff_date
 else n >= needed_measurements_120s)

should_keep = per_day.apply(has_enough_readings, axis='columns')
should_keep.head()

timestamp
2018-05-19 00:00:00-07:00 False
2018-05-20 00:00:00-07:00 True
2018-05-21 00:00:00-07:00 True
2018-05-22 00:00:00-07:00 True
2018-05-23 00:00:00-07:00 True
Freq: D, dtype: bool

We’re ready to average together the readings for each day and then remove the days
without enough readings:

def compute_daily_avgs(pa):
 should_keep = (pa.resample('D')
 ['PM25cf1']
 .size()
 .to_frame()
 .apply(has_enough_readings, axis='columns'))
 return (pa.resample('D')
 .mean()
 .loc[should_keep])

pa = (pa_full
 .pipe(drop_and_rename_cols)
 .pipe(parse_timestamps)
 .pipe(convert_tz)
 .pipe(drop_duplicate_rows)
 .pipe(compute_daily_avgs))
pa.head(2)

 PM25cf1 TempF RH

timestamp
2018-05-20 00:00:00-07:00 2.48 83.35 28.72
2018-05-21 00:00:00-07:00 3.00 83.25 29.91

Now we have the average daily PM2.5 readings for instrument A, and we need to
repeat on instrument B the data wrangling we just performed on instrument A. For‐
tunately, we can reuse the same pipeline. For brevity, we don’t include that wrangling

Wrangling PurpleAir Sensor Data | 301

here. But we need to decide what to do if the PM2.5 averages differ. Barkjohn
dropped rows if the PM2.5 values for A and B differed by more than 61%, or by more
than 5 µg m⁻³. For this pair of sensors, that leads to dropping 12 of the 500+ rows.

As you can see, it takes a lot of work to prepare and clean these data: we handled
missing data, aggregated the readings for each instrument, averaged the readings
together from the two instruments, and removed rows where they disagreed. This
work has given us a set of PM2.5 readings that we are more confident in. We know
that each PM2.5 value in the final dataframe is the daily average from two separate
instruments that generated consistent and complete readings.

To fully replicate Barkjohn’s analysis, we would need to repeat this process over all the
PurpleAir sensors. Then we would repeat the AQS cleaning procedure on all the AQS
sensors. Finally, we would merge the PurpleAir and AQS data together. This proce‐
dure produces daily average readings for each collocated sensor pair. For brevity, we
omit this code. Instead, we proceed with the final steps of the analysis using the
group’s dataset. We begin with an EDA with an eye toward modeling.

Exploring PurpleAir and AQS Measurements
Let’s explore the cleaned dataset of matched AQS and PurpleAir PM2.5 readings and
look for insights that might help us in modeling. Our main interest is in the relation‐
ship between the two sources of air quality measurements. But we want to keep in
mind the scope of the data, like how these data are situated in time and place. We
learned from our data cleaning that we are working with daily averages of PM2.5 for
a couple of years and that we have data from dozens of locations across the US.

First we review the entire cleaned dataframe:

full_df

 date id region pm25aqs pm25pa temp rh dew
0 2019-05-17 AK1 Alaska 6.7 8.62 18.03 38.56 3.63
1 2019-05-18 AK1 Alaska 3.8 3.49 16.12 49.40 5.44
2 2019-05-21 AK1 Alaska 4.0 3.80 19.90 29.97 1.73
...
12427 2019-02-20 WI6 North 15.6 25.30 1.71 65.78 -4.08
12428 2019-03-04 WI6 North 14.0 8.21 -14.38 48.21 -23.02
12429 2019-03-22 WI6 North 5.8 9.44 5.08 52.20 -4.02

12246 rows × 8 columns

We include an explanation for each of the columns in our dataframe in the following
table:

302 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

Column Description
date Date of the observation

id A unique label for a site, formatted as the US state abbreviation with a number (we performed data cleaning for
site ID CA1)

region The name of the region, which corresponds to a group of sites (the CA1 site is located in the West region)

pm25aqs The PM2.5 measurement from the AQS sensor

pm25pa The PM2.5 measurement from the PurpleAir sensor

temp Temperature, in Celsius

rh Relative humidity, ranging from 0% to 100%

dew The dew point (a higher dew point means more moisture is in the air)

Let’s start with making a few simple visualizations to gain insight. Since the scope
involves measurements over time at particular locations, we can choose one location
with many measurements and make a line plot of the weekly average air quality. To
choose, let’s find the sites with many records:

full_df['id'].value_counts()[:3]

id
IA3 830
NC4 699
CA2 659
Name: count, dtype: int64

The location labeled NC4 has nearly 700 observations. To smooth the line plot a bit,
let’s plot weekly averages:

nc4 = full_df.loc[full_df['id'] =='NC4']

ts_nc4 = (nc4.set_index('date')
 .resample('W')
 ['pm25aqs', 'pm25pa']
 .mean()
 .reset_index()
)

fig = px.line(ts_nc4, x='date', y='pm25aqs',
 labels={'date':'', 'pm25aqs':'PM2.5 weekly avg'},
 width=500, height=250)

fig.add_trace(go.Scatter(x=ts_nc4['date'], y=ts_nc4['pm25pa'],
 line=dict(color='black', dash='dot')))

fig.update_yaxes(range=[0,30])
fig.update_layout(showlegend=False)
fig.show()

Exploring PurpleAir and AQS Measurements | 303

We see that most PM2.5 values for the AQS sensor (solid line) range between 5.0 and
15.0 µg m⁻³. The PurpleAir sensor follows the up-and-down pattern of the AQS sen‐
sor, which is reassuring. But the measurements are consistently higher than AQS and,
in some cases, quite a bit higher, which tells us that a correction might be helpful.

Next, let’s consider the distributions of the PM2.5 readings for the two sensors:

left = px.histogram(nc4, x='pm25aqs', histnorm='percent')
right = px.histogram(nc4, x='pm25pa', histnorm='percent')

fig = left_right(left, right, width=600, height=250)
fig.update_xaxes(title='AQS readings', col=1, row=1)
fig.update_xaxes(title='PurpleAir readings', col=2, row=1)
fig.update_yaxes(title='percent', col=1, row=1)
fig.show()

Both distributions are skewed right, which often happens when there’s a lower bound
on values (in this case, 0). A better way to compare these two distributions is with a

304 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

quantile–quantile plot (see Chapter 10). With a q–q plot it can be easier to compare
means, spreads, and tails:

percs = np.arange(1, 100, 1)
aqs_qs = np.percentile(nc4['pm25aqs'], percs, interpolation='lower')
pa_qs = np.percentile(nc4['pm25pa'], percs, interpolation='lower')
perc_df = pd.DataFrame({'percentile': percs, 'aqs_qs':aqs_qs, 'pa_qs':pa_qs})

fig = px.scatter(perc_df, x='aqs_qs', y='pa_qs',
 labels={'aqs_qs': 'AQS quantiles',
 'pa_qs': 'PurpleAir quantiles'},
 width=350, height=250)

fig.add_trace(go.Scatter(x=[2, 13], y=[1, 25],
 mode='lines', line=dict(dash='dash', width=4)))
fig.update_layout(showlegend=False)
fig

The quantile–quantile plot is roughly linear. We overlaid a dashed line with a slope of
2.2; it lines up the quantiles well, which indicates the spread of the PurpleAir meas‐
urements is about twice that of AQS.

What we can’t see in the q–q plot or the side-by-side histograms is how the sensor
readings vary together. Let’s look at this next. First, we take a look at the distribution
of difference between the two readings:

diffs = (nc4['pm25pa'] - nc4['pm25aqs'])

fig = px.histogram(diffs, histnorm='percent',
 width=350, height=250)

fig.update_xaxes(range=[-10,30], title="Difference: PA–AQS reading")
fig.update_traces(xbins=dict(
 start=-10.0, end=30.0, size=2))

Exploring PurpleAir and AQS Measurements | 305

fig.update_layout(showlegend=False)
fig.show()

If the instruments are in perfect agreement, we will see a spike at 0. If the instruments
are in agreement and there is a measurement error with no bias, we expect to see a
distribution centered at 0. Instead, we see that 90% of the time, the PurpleAir meas‐
urement is larger than the AQS 24-hour average, and about 25% of the time it is more
than 10 µg/m3 higher, which is a lot given the AQS averages tend to be between 5
µg/m3 and 10 µg/m3.

A scatterplot can give us additional insight into the relationship between the meas‐
urements from these two instruments. Since we are interested in finding a general
relationship, regardless of time and location, we include all of our average readings in
the plot:

px.scatter(full_df, x='pm25aqs', y='pm25pa', width=350, height=250,
 labels={'pm25aqs':'AQS PM2.5', 'pm25pa':'PurpleAir PM2.5'})

306 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

While the relationship looks linear, all but a handful of readings are in the bottom-left
corner of the plot. Let’s remake the scatterplot and zoom in on the bulk of the data to
get a better look. We also add a smooth curve to the plot to help us see the relation‐
ship better:

full_df = full_df.loc[(full_df['pm25aqs'] < 50)]

px.scatter(full_df, x='pm25aqs', y='pm25pa',
 trendline='lowess', trendline_color_override="orange",
 labels={'pm25aqs':'AQS PM2.5', 'pm25pa':'PurpleAir PM2.5'},
 width=350, height=250)

The relationship looks roughly linear, but there is a slight bend in the curve for small
values of AQS. When the air is very clean, the PurpleAir sensor doesn’t pick up as
much particulate matter and so is more accurate. Also, we can see that the curve
should go through the point (0, 0). Despite the slight bend in the relationship, the lin‐
ear association (correlation) between these two measurements is high:

np.corrcoef(full_df['pm25aqs'], full_df['pm25pa'])

array([[1. , 0.88],
 [0.88, 1.]])

Before starting this analysis, we expected that PurpleAir measurements would gener‐
ally overestimate the PM2.5. And indeed, this is reflected in the scatterplot, but we
also see that there appears to be a strong linear relationship between the measure‐
ments from these two instruments that will be helpful in calibrating the PurpleAir
sensor.

Exploring PurpleAir and AQS Measurements | 307

Creating a Model to Correct PurpleAir Measurements
Now that we’ve explored the relationship between PM2.5 readings from AQS and
PurpleAir sensors, we’re ready for the final step of the analysis: creating a model that
corrects PurpleAir measurements. Barkjohn’s original analysis fits many models to
the data in order to find the most appropriate one. In this section, we fit a simple lin‐
ear model using the techniques from Chapter 4. We also briefly describe the final
model Barkjohn chose for real-world use. Since these models use methods that we
introduce later in the book, we won’t explain the technical details very deeply here.
Instead, we encourage you to revisit this section after reading Chapter 15.

First, let’s go over our modeling goals. We want to create a model that predicts PM2.5
as accurately as possible. To do this, we build a model that adjusts PurpleAir meas‐
urements based on AQS measurements. We treat the AQS measurements as the true
PM2.5 values because they are taken from carefully calibrated instruments and are
actively used by the US government for decision making. So we have reason to trust
the AQS PM2.5 values as being precise and close to the truth.

After we build the model that adjusts the PurpleAir measurements using AQS, we
then flip the model around and use it to predict the true air quality in the future from
PurpleAir measurements when we don’t have a nearby AQS instrument. This is a cali‐
bration scenario. Since the AQS measurements are close to the truth, we fit the more
variable PurpleAir measurements to them; this is the calibration procedure. Then we
use the calibration curve to correct future PurpleAir measurements. This two-step
process is encapsulated in the upcoming simple linear model and its flipped form.

First, we fit a line to predict a PurpleAir (PA) measurement from the ground truth, as
recorded by an AQS instrument:

PA ≈ b + mAQS

Next, we flip the line around to use a PA measurement to predict the air quality:

True air quality ≈ − b/m + 1/mPA

The scatterplot and histograms that we made during our exploratory data analysis
suggest that the PurpleAir measurements are more variable, which supports the cali‐
bration approach. And we saw that the PurpleAir measurements are about twice as
high as the AQS measurements, which suggests that m may be close to 2 and 1/m
close to 1/2.

308 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

Why Two Steps?
This calibration procedure might seem a bit roundabout. Why not fit a linear model
that directly uses PurpleAir to predict AQS? That seems a lot easier, and we wouldn’t
need to invert anything.

Since AQS measurements are “true” (or close to it), they have no error. Intuitively, a
linear model works conditionally on the value of the variable on the x-axis, and mini‐
mizes the error in the y direction: y − (b + mx). So we place the accurate measure‐
ments on the x-axis to fit the line, called the calibration curve. Then, in the future, we
invert the line to predict the truth from our instrument’s measurement. That’s why
this process is also called inverse regression. Calibration is a reasonable thing to do
only when the pairs of measurements are highly correlated.

As a simpler example, let’s say we want to calibrate a scale. We could do this by plac‐
ing known weights—say, 1 kg, 5 kg, and 10 kg—onto the scale and seeing what the
scale reports. We typically repeat this a few times, each time getting slightly different
measurements from the scale. If we discover that our scale is often 10% too high
(y = 1.1x), then when we weigh something in the future, we adjust our scale’s reading
downward by 90% (1/1.1 = 0.9). Analogously, the AQS measurements are the known
quantities, and our model checks what the PurpleAir sensor reports.

Now let’s fit the model. Following the notion from Chapter 4, we choose a loss func‐
tion and minimize the average error. Recall that a loss function measures how far away
our model is from the actual data. We use squared loss, which in this case is
[PA − (b + mAQS)]2. And to fit the model to our data, we minimize the average
squared loss over our data:

1
n ∑

i = 1

n
[PAi − (b + mAQSi]

2

We use the linear modeling functionality provided by scikit-learn to do this (again,
don’t worry about these details for now):

from sklearn.linear_model import LinearRegression

AQS, PA = full_df[['pm25aqs']], full_df['pm25pa']

model = LinearRegression().fit(AQS, PA)
m, b = model.coef_[0], model.intercept_

By inverting the line, we get the estimate:

print(f"True air quality estimate = {-b/m:.2} + {1/m:.2}PA")

True air quality estimate = 1.4 + 0.53PA

Creating a Model to Correct PurpleAir Measurements | 309

This is close to what we expected. The adjustment to PurpleAir measurements is
about 1/2.

The model that Barkjohn settled on incorporated the relative humidity:

PA ≈ b + m1AQS + m2RH

This is an example of a multivariable linear regression model—it uses more than one
variable to make predictions. We can fit it by minimizing the average squared error
over the data:

1
n ∑

i = 1

n
[PAi − (b + m1AQSi + m2RHi]

2

Then we invert the calibration to find the prediction model using the following
equation:

True air quality ≈ − b
m1

+ 1
m1

PA −
m2
m1

RH

We fit this model and check the coefficients:

AQS_RH, PA = full_df[['pm25aqs', 'rh']], full_df['pm25pa']
model_h = LinearRegression().fit(AQS_RH, PA)
[m1, m2], b = model_h.coef_, model_h.intercept_

print(f"True Air Quality Estimate = {-b/m:1.2} + {1/m1:.2}PA + {-m2/m1:.2}RH")

True Air Quality Estimate = 5.7 + 0.53PA + -0.088RH

In Chapters 15 and 16, we will learn how to compare these two models by examining
things like the size of and patterns in prediction errors. For now, we note that the
model that incorporates relative humidity performs the best.

Summary
In this chapter, we replicated Barkjohn’s analysis. We created a model that corrects
PurpleAir measurements so that they closely match AQS measurements. The accu‐
racy of this model enables the PurpleAir sensors to be included on official US govern‐
ment maps, like the AirNow Fire and Smoke map. Importantly, this model gives
people timely and accurate measurements of air quality.

We saw how crowdsourced, open data can be improved with data from precise, rigor‐
ously maintained, government-monitored equipment. In the process, we focused on

310 | Chapter 12: Case Study: How Accurate Are Air Quality Measurements?

cleaning and merging data from multiple sources, but we also fit models to adjust and
improve air quality measurements.

For this case study, we applied many concepts covered in this part of the book. As you
saw, wrangling files and data tables into a form we can analyze is a large and impor‐
tant part of data science. We used file wrangling and the notions of granularity from
Chapter 8 to prepare two sources for merging. We got them into structures where we
could match neighboring air quality sensors. This “grungy” part of data science was
essential to widening the reach of data from rigorously maintained, precise
government-monitored equipment by augmenting it with crowdsourced, open data.

This preparation process involved intensive, careful examination, cleaning, and
improvement of the data to ensure their compatibility across the two sources and
their trustworthiness in our analysis. Concepts from Chapter 9 helped us work with
time data effectively and find and correct numerous issues like missing data points
and even duplicated data values.

File and data wrangling, exploratory data analysis, and visualization are major parts
of many analyses. While fitting models may seem to be the most exciting part of data
science, getting to know and trust the data is crucial and often leads to important
insights in the modeling phase. Topics related to modeling make up most of the rest
of this book. However, before we begin, we cover two more topics related to data
wrangling. In the next chapter, we show how to create analyzable data from text, and
in the following chapter we examine other formats for source files that we mentioned
in Chapter 8.

Before you head to the next chapter, take stock of what you’ve learned so far. Pat
yourself on the back—you’ve already come a long way! The principles and techniques
we’ve covered here are useful for nearly every type of data analysis, and you can read‐
ily start applying them toward analyses of your own.

Summary | 311

PART IV

Other Data Sources

CHAPTER 13

Working with Text

Data can reside not just as numbers but also in words: names of dog breeds, restau‐
rant violation descriptions, street addresses, speeches, blog posts, internet reviews,
and much more. To organize and analyze information contained in text, we often
need to do some of the following tasks:

Convert text into a standard format
This is also referred to as canonicalizing text. For example, we might need to con‐
vert characters to lowercase, use common spellings and abbreviations, or remove
punctuation and blank spaces.

Extract a piece of text to create a feature
As an example, a string might contain a date embedded in it, and we want to pull
it out from the string to create a date feature.

Transform text into features
We might want to encode particular words or phrases as 0-1 features to indicate
their presence in a string.

Analyze text
In order to compare entire documents at once, we can transform a document
into a vector of word counts.

This chapter introduces common techniques for working with text data. We show
how simple string manipulation tools are often all we need to put text in a standard
form or extract portions of strings. We also introduce regular expressions for more
general and robust pattern matching. To demonstrate these text operations we use
several examples. We first introduce these examples and describe the work we want to
do to prepare the text for analysis.

315

Examples of Text and Tasks
For each type of task just introduced, we provide a motivating example. These exam‐
ples are based on real tasks that we have carried out, but to focus on the concept,
we’ve reduced the data to snippets.

Convert Text into a Standard Format
Let’s say we want to study connections between population demographics and elec‐
tion results. To do this, we’ve taken election data from Wikipedia and population data
from the US Census Bureau. The granularity of the data is at the county level, and we
need to use the county names to join the tables. Unfortunately, the county names in
these two tables don’t always match:

 County State Voted
0 De Witt County IL 97.8
1 Lac qui Parle County MN 98.8
2 Lewis and Clark County MT 95.2
3 St John the Baptist Parish LA 52.6

 County State Population
0 DeWitt IL 16,798
1 Lac Qui Parle MN 8,067
2 Lewis & Clark MT 55,716
3 St. John the Baptist LA 43,044

We can’t join the tables until we clean the strings to have a common format for
county names. We need to change the case of characters, use common spellings and
abbreviations, and address punctuation.

Extract a Piece of Text to Create a Feature
Text data sometimes has a lot of structure, especially when it was generated by a
computer. As an example, the following is a web server’s log entry. Notice how the
entry has multiple pieces of data, but the pieces don’t have a consistent delimiter—for
instance, the date appears in square brackets, but other parts of the data appear in
quotes and parentheses:

169.237.46.168 - -
[26/Jan/2004:10:47:58 -0800]"GET /stat141/Winter04 HTTP/1.1" 301 328
"http://anson.ucdavis.edu/courses"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322)"

316 | Chapter 13: Working with Text

Even though the file format doesn’t align with one of the simple formats we saw in
Chapter 8, we can use text processing techniques to extract pieces of text to create
features.

Transform Text into Features
In Chapter 9, we created a categorical feature based on the content of the strings.
There, we examined the descriptions of restaurant violations and we created nominal
variables for the presence of particular words. We’ve displayed a few example viola‐
tions here:

 unclean or degraded floors walls or ceilings
 inadequate and inaccessible handwashing facilities
 inadequately cleaned or sanitized food contact surfaces
 wiping cloths not clean or properly stored or inadequate sanitizer
 foods not protected from contamination
 unclean nonfood contact surfaces
 unclean or unsanitary food contact surfaces
 unclean hands or improper use of gloves
 inadequate washing facilities or equipment

These new features can be used in an analysis of food safety scores. Previously, we
made simple features that marked whether a description contained a word like glove
or hair. In this chapter, we more formally introduce the regular expression tools that
we used to create these features.

Text Analysis
Sometimes we want to compare entire documents. For example, the US president
gives a State of the Union speech every year. Here are the first few lines of the very
first speech:

State of the Union Address
George Washington
January 8, 1790

Fellow-Citizens of the Senate and House of Representatives:
I embrace with great satisfaction the opportunity which now presents itself
of congratulating you on the present favorable prospects of our public …

We might wonder: How have the State of the Union speeches changed over time? Do
different political parties focus on different topics or use different language in their
speeches? To answer these questions, we can transform the speeches into a numeric
form that lets us use statistics to compare them.

Examples of Text and Tasks | 317

These examples serve to illustrate the ideas of string manipulation, regular expres‐
sions, and text analysis. We start with describing simple string manipulation.

String Manipulation
There are a handful of basic string manipulation tools that we use a lot when we work
with text:

• Transform uppercase characters to lowercase (or vice versa).
• Replace a substring with another or delete the substring.
• Split a string into pieces at a particular character.
• Slice a string at specified locations.

We show how we can combine these basic operations to clean up the county names
data. Remember that we have two tables that we want to join, but the county names
are written inconsistently.

Let’s start by converting the county names to a standard format.

Converting Text to a Standard Format with Python String Methods
We need to address the following inconsistencies between the county names in the
two tables:

• Capitalization: qui versus Qui.
• Omission of words: County and Parish are absent from the census table.
• Different abbreviation conventions: & versus and.
• Different punctuation conventions: St. versus St.
• Use of whitespace: DeWitt versus De Witt.

When we clean text, it’s often easiest to first convert all of the characters to lowercase.
It’s easier to work entirely with lowercase characters than to try to track combinations
of uppercase and lowercase. Next, we want to fix inconsistent words by replacing &
with and and removing County and Parish. Finally, we need to fix up punctuation
and whitespace inconsistencies.

With just two Python string methods, lower and replace, we can take all of these
actions and clean the county names. These are combined into a method called
clean_county:

def clean_county(county):
 return (county
 .lower()

318 | Chapter 13: Working with Text

 .replace('county', '')
 .replace('parish', '')
 .replace('&', 'and')
 .replace('.', '')
 .replace(' ', ''))

Although simple, these methods are the primitives that we can piece together to form
more complex string operations. These methods are conveniently defined on all
Python strings and do not require importing other modules. It is worth familiarizing
yourself with the complete list of string methods, but we describe a few of the most
commonly used methods in Table 13-1.

Table 13-1. String methods

Method Description
str.lower() Returns a copy of a string with all letters converted to lowercase

str.replace(a, b) Replaces all instances of the substring a in str with substring b

str.strip() Removes leading and trailing whitespace from str

str.split(a) Returns substrings of str split at a substring a

str[x:y] Slices str, returning indices x (inclusive) to y (not inclusive)

We next verify that the clean_county method produces matching county names:

([clean_county(county) for county in election['County']],
 [clean_county(county) for county in census['County']])

(['dewitt', 'lacquiparle', 'lewisandclark', 'stjohnthebaptist'],
 ['dewitt', 'lacquiparle', 'lewisandclark', 'stjohnthebaptist'])

Since the county names now have consistent representations, we can successfully join
the two tables.

String Methods in pandas
In the preceding code, we used a loop to transform each county name. The pandas
Series objects provide a convenient way to apply string methods to each item in the
series.

The .str property on pandas Series exposes the same Python string methods. Call‐
ing a method on the .str property calls the method on each item in the series. This
allows us to transform each string in the series without using a loop. We save the
transformed counties back into their originating tables. First we transform the county
names in the election table:

election['County'] = (election['County']
 .str.lower()
 .str.replace('parish', '')
 .str.replace('county', '')

String Manipulation | 319

https://oreil.ly/YWl9d

 .str.replace('&', 'and')
 .str.replace('.', '', regex=False)
 .str.replace(' ', ''))

We also transform the names in the census table so that the two tables contain the
same representations of the county names. We can join these tables:

election.merge(census, on=['County','State'])

 County State Voted Population
0 dewitt IL 97.8 16,798
1 lacquiparle MN 98.8 8,067
2 lewisandclark MT 95.2 55,716
3 stjohnthebaptist LA 52.6 43,044

Note that we merged on two columns: the county name and the
state. We did this because some states have counties with the same
name. For example, California and New York both have a county
called King.

To see the complete list of string methods, we recommend looking at the Python doc‐
umentation on str methods and the pandas documentation for the .str accessor.
We did the canonicalization task using only str.lower() and multiple calls to
str.replace(). Next, we extract text with another string method, str.split().

Splitting Strings to Extract Pieces of Text
Let’s say we want to extract the date from the web server’s log entry:

log_entry

169.237.46.168 - - [26/Jan/2004:10:47:58 -0800]"GET /stat141/Winter04 HTTP/1.1"
301 328 "http://anson.ucdavis.edu/courses""Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.0; .NET CLR 1.1.4322)"

String splitting can help us home in on the pieces of information that form the date.
For example, when we split the string on the left bracket, we get two strings:

log_entry.split('[')

['169.237.46.168 - - ',
 '26/Jan/2004:10:47:58 -0800]"GET /stat141/Winter04 HTTP/1.1" 301 328 "http://
anson.ucdavis.edu/courses""Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.0; .NET CLR 1.1.4322)"']

The second string has the date information, and to get the day, month, and year, we
can split that string on a colon:

log_entry.split('[')[1].split(':')[0]

320 | Chapter 13: Working with Text

https://oreil.ly/Fb34C
https://oreil.ly/Fb34C
https://oreil.ly/njVi3

'26/Jan/2004'

To separate out the day, month, and year, we can split on the forward slash. Alto‐
gether we split the original string three times, each time keeping only the pieces we
are interested in:

(log_entry.split('[')[1]
 .split(':')[0]
 .split('/'))

['26', 'Jan', '2004']

By repeatedly using split(), we can extract many of the parts of the log entry. But
this approach is complicated—if we wanted to also get the hour, minute, second, and
time zone of the activity, we would need to use split() six times in total. There’s a
simpler way to extract these parts:

import re

pattern = r'[\[/:\]]'
re.split(pattern, log_entry)[4:11]

['26', 'Jan', '2004', '10', '47', '58', '-0800']

This alternative approach uses a powerful tool called a regular expression, which we
cover in the next section.

Regular Expressions
Regular expressions (or regex for short) are special patterns that we use to match parts
of strings. Think about the format of a Social Security number (SSN) like
134-42-2012. To describe this format, we might say that SSNs consist of three digits,
then a dash, two digits, another dash, then four digits. Regexes let us capture this pat‐
tern in code. Regexes give us a compact and powerful way to describe this pattern of
digits and dashes. The syntax of regular expressions is fortunately quite simple to
learn; we introduce nearly all of the syntax in this section alone.

As we introduce the concepts, we tackle some of the examples described in an earlier
section and show how to carry out the tasks with regular expressions. Almost all pro‐
gramming languages have a library to match patterns using regular expressions, mak‐
ing regular expressions useful in any programming language. We use some of the
common methods available in the Python built-in re module to accomplish the tasks
from the examples. These methods are summarized in Table 13-7 at the end of this
section, where the basic usage and return value are briefly described. Since we only
cover a few of the most commonly used methods, you may find it useful to consult
the official documentation on the re module as well.

Regular expressions are based on searching a string one character (aka literal) at a
time for a pattern. We call this notion concatenation of literals.

Regular Expressions | 321

https://oreil.ly/IXWol

Concatenation of Literals
Concatenation is best explained with a basic example. Suppose we are looking for the
pattern cat in the string cards scatter!. Figure 13-1 contains a diagram that shows
how the search proceeds through the string one character at a time. Notice that a “c”
is found in the first position, followed by “a,” but not “t,” so the search backs up to the
second character in the string and begins searching for a “c” again. The pattern “cat”
is found within the string cards scatter! in positions 8–10. Once you get the hang
of this process, you can move on to the richer set of patterns; they all follow this basic
paradigm.

Figure 13-1. To match literal patterns, the regex engine moves along the string and
checks one literal at a time for a match of the entire pattern. Notice that the pattern is
found within the word scatters and that a partial match is found in cards.

In the preceding example, we observe that regular expressions can
match patterns that appear anywhere in the input string. In Python,
this behavior differs depending on the method used to match the
regex—some methods only return a match if the regex appears at
the start of the string; other methods return a match anywhere in
the string.

These richer patterns are made of character classes and metacharacters like wildcards.
We describe them in the subsections that follow.

Character classes
We can make patterns more flexible by using a character class (also known as a char‐
acter set), which lets us specify a collection of equivalent characters to match. This
allows us to create more relaxed matches. To create a character class, wrap the set of
desired characters in brackets []. For example, the pattern [0123456789] means
“match any literal within the brackets”—in this case, any single digit. Then, the fol‐
lowing regular expression matches three digits:

[0123456789][0123456789][0123456789]

322 | Chapter 13: Working with Text

This is such a commonly used character class that there is a shorthand notation for
the range of digits, [0-9]. Character classes allow us to create a regex for SSNs:

[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]

Two other ranges that are commonly used in character classes are [a-z] for lower‐
case and [A-Z] for uppercase letters. We can combine ranges with other equivalent
characters and use partial ranges. For example, [a-cX-Z27] is equivalent to the char‐
acter class [abcXYZ27].

Let’s return to our original pattern cat and modify it to include two character classes:

c[oa][td]

This pattern matches cat, but it also matches cot, cad, and cod:

 Regex: c[oa][td]
 Text: The cat eats cod, cads, and cots, but not coats.
Matches: *** *** *** ***

The idea of moving through the string one character at a time still remains the core
notion, but now there’s a bit more flexibility in which literal is considered a match.

Wildcard character

When we really don’t care what the literal is, we can specify this with ., the period
character. This matches any character except a newline.

Negated character classes
A negated character class matches any character except those between the square
brackets. To create a negated character class, place the caret symbol as the first char‐
acter after the left square bracket. For example, [^0-9] matches any character except
a digit.

Shorthands for character classes
Some character sets are so common that there are shorthands for them. For example,
\d is short for [0-9]. We can use this shorthand to simplify our search for SSN:

\d\d\d-\d\d-\d\d\d\d

Our regular expression for SSNs isn’t quite bulletproof. If the string has extra digits at
the beginning or end of the pattern we’re looking for, then we still get a match. Note
that we add the r character before the quotes to create a raw string, which makes
regexes easier to write:

 Regex: \d\d\d-\d\d-\d\d\d\d
 Text: My other number is 6382-13-38420.
Matches: ***********

Regular Expressions | 323

We can remedy the situation with a different sort of metacharacter: one that matches
a word boundary.

Anchors and boundaries
At times we want to match a position before, after, or between characters. One exam‐
ple is to locate the beginning or end of a string; these are called anchors. Another is to
locate the beginning or end of a word, which we call a boundary. The metacharacter
\b denotes the boundary of a word. It has 0 length, and it matches whitespace or
punctuation on the boundary of the pattern. We can use it to fix our regular expres‐
sion for SSNs:

 Regex: \d\d\d-\d\d-\d\d\d\
 Text: My other number is 6382-13-38420.
Matches:

 Regex: \b\d\d\d-\d\d-\d\d\d\d\b
 Text: My reeeal number is 382-13-3842.
Matches: ***********

Escaping metacharacters

We have now seen several special characters, called metacharacters: [and] denote a
character class, ^ switches to a negated character class, . represents any character, and
- denotes a range. But sometimes we might want to create a pattern that matches one
of these literals. When this happens, we must escape it with a backslash. For example,
we can match the literal left bracket character using the regex \[:

 Regex: \[
 Text: Today is [2022/01/01]
Matches: *

Next, we show how quantifiers can help create a more compact and clear regular
expression for SSNs.

Quantifiers
To create a regex to match SSNs, we wrote:

\b[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]\b

This matches a “word” consisting of three digits, a dash, two more digits, a dash, and
four more digits.

Quantifiers allow us to match multiple consecutive appearances of a literal. We spec‐
ify the number of repetitions by placing the number in curly braces { }.

Let’s use Python’s built-in re module for matching this pattern:

import re

324 | Chapter 13: Working with Text

ssn_re = r'\b[0-9]{3}-[0-9]{2}-[0-9]{4}\b'
re.findall(ssn_re, 'My SSN is 382-34-3840.')

['382-34-3840']

Our pattern shouldn’t match phone numbers. Let’s try it:

re.findall(ssn_re, 'My phone is 382-123-3842.')

[]

A quantifier always modifies the character or character class to its immediate left.
Table 13-2 shows the complete syntax for quantifiers.

Table 13-2. Quantifier examples

Quantifier Meaning
{m, n} Match the preceding character m to n times.

{m} Match the preceding character exactly m times.

{m,} Match the preceding character at least m times.

{,n} Match the preceding character at most n times.

Some commonly used quantifiers have a shorthand, as shown in Table 13-3.

Table 13-3. Shorthand quantifiers

Symbol Quantifier Meaning
* {0,} Match the preceding character 0 or more times.

+ {1,} Match the preceding character 1 or more times.

? {0,1} Match the preceding character 0 or 1 time.

Quantifiers are greedy and will return the longest match possible. This sometimes
results in surprising behavior. Since an SSN starts and ends with a digit, we might
think the following shorter regex will be a simpler approach for finding SSNs. Can
you figure out what went wrong in the matching?

ssn_re_dot = r'[0-9].+[0-9]'
re.findall(ssn_re_dot, 'My SSN is 382-34-3842 and hers is 382-34-3333.')

['382-34-3842 and hers is 382-34-3333']

Notice that we use the metacharacter . to match any character. In many cases, using a
more specific character class prevents these false “overmatches.” Our earlier pattern
that includes word boundaries does this:

Regular Expressions | 325

re.findall(ssn_re, 'My SSN is 382-34-3842 and hers is 382-34-3333.')

['382-34-3842', '382-34-3333']

Some platforms allow you to turn off greedy matching and use lazy matching, which
returns the shortest string.

Literal concatenation and quantifiers are two of the core concepts in regular expres‐
sions. Next, we introduce two more core concepts: alternation and grouping.

Alternation and Grouping to Create Features
Character classes let us match multiple options for a single literal. We can use alterna‐
tion to match multiple options for a group of literals. For instance, in the food safety
example in Chapter 9, we marked violations related to body parts by seeing if the vio‐
lation had the substring hand, nail, hair, or glove. We can use the | character in a
regex to specify this alteration:

body_re = r"hand|nail|hair|glove"
re.findall(body_re, "unclean hands or improper use of gloves")

['hand', 'glove']

re.findall(body_re, "Unsanitary employee garments hair or nails")

['hair', 'nail']

With parentheses we can locate parts of a pattern, which are called regex groups. For
example, we can use regex groups to extract the day, month, year, and time from the
web server log entry:

This pattern matches the entire timestamp
time_re = r"\[[0-9]{2}/[a-zA-z]{3}/[0-9]{4}:[0-9:\-]*\]"
re.findall(time_re, log_entry)

['[26/Jan/2004:10:47:58 -0800]']

Same regex, but we use parens to make regex groups...
time_re = r"\[([0-9]{2})/([a-zA-z]{3})/([0-9]{4}):([0-9:\-]*)\]"

...which tells findall() to split up the match into its groups
re.findall(time_re, log_entry)

[('26', 'Jan', '2004', '10:47:58 -0800')]

As we can see, re.findall returns a list of tuples containing the individual compo‐
nents of the date and time of the web log.

We have introduced a lot of terminology, so in the next section we bring it all
together into a set of tables for easy reference.

326 | Chapter 13: Working with Text

Reference Tables
We conclude this section with a few tables that summarize order of operation, meta‐
characters, and shorthands for character classes. We also provide tables summarizing
the handful of methods in the re Python library that we have used in this section.

The four basic operations for regular expressions—concatenation, quantifying, alter‐
nation, and grouping—have an order of precedence, which we make explicit in
Table 13-4.

Table 13-4. Order of operations

Operation Order Example Matches
Concatenation 3 cat cat

Alternation 4 cat|mouse cat and mouse

Quantifying 2 cat? ca and cat

Grouping 1 c(at)? c and cat

Table 13-5 provides a list of the metacharacters introduced in this section, plus a few
more. The column labeled “Doesn’t match” gives examples of strings that the example
regexes don’t match.

Table 13-5. Metacharacters

Char Description Example Matches Doesn’t match
. Any character except \n ... abc ab

[] Any character inside brackets [cb.]ar car
.ar

jar

[^] Any character not inside brackets [^b]ar car
par

bar
ar

* ≥ 0 or more of previous symbol, shorthand for {0,} [pb]*ark bbark
ark

dark

+ ≥ 1 or more of previous symbol, shorthand for {1,} [pb]+ark bbpark
bark

dark
ark

? 0 or 1 of previous symbol, shorthand for {0,1} s?he she
he

the

{n} Exactly n of previous symbol hello{3} hellooo hello

| Pattern before or after bar we|[ui]s we
us
is

es
e
s

\ Escape next character \[hi\] [hi] hi

^ Beginning of line ^ark ark two dark

$ End of line ark$ noahs ark noahs arks

\b Word boundary ark\b ark of noah noahs arks

Regular Expressions | 327

Additionally, in Table 13-6, we provide shorthands for some commonly used charac‐
ter sets. These shorthands don’t need [].

Table 13-6. Character class shorthands

Description Bracket form Shorthand
Alphanumeric character [a-zA-Z0-9_] \w

Not an alphanumeric character [^a-zA-Z0-9_] \W

Digit [0-9] \d

Not a digit [^0-9] \D

Whitespace [\t\n\f\r\p{Z}] \s

Not whitespace [^\t\n\f\r\p{z}] \S

We used the following methods in re in this chapter. The names of the methods are
indicative of the functionality they perform: search or match a pattern in a string; find
all cases of a pattern in a string; substitute all occurrences of a pattern with a sub‐
string; and split a string into pieces at the pattern. Each requires a pattern and string
to be specified, and some have extra arguments. Table 13-7 provides the format of the
method usage and a description of the return value.

Table 13-7. Regular expression methods

Method Return value
re.search(pattern, string) Match object if the pattern is found anywhere in the string,

otherwise None

re.match(pattern, string) Match object if the pattern is found at the beginning of the string,
otherwise None

re.findall(pattern, string) List of all matches of pattern in string

re.sub(pattern, replacement, string) String where all occurrences of pattern are replaced by
replacement in the string

re.split(pattern, string) List of the pieces of string around the occurrences of pattern

As we saw in the previous section, pandas Series objects have a .str property that
supports string manipulation using Python string methods. Conveniently, the .str
property also supports some functions from the re module. Table 13-8 shows the
analogous functionality from Table 13-7 of the re methods. Each requires a pattern.
See the pandas docs for a complete list of string methods.

Table 13-8. Regular expressions in pandas

Method Return value
str.contains(pattern, regex=True) Series of booleans indicating whether the pattern is found

str.findall(pattern, regex=True) List of all matches of pattern

328 | Chapter 13: Working with Text

https://oreil.ly/aHJRz

Method Return value
str.replace(pattern, replacement,

regex=True)
Series with all matching occurrences of pattern replaced by
replacement

str.split(pattern, regex=True) Series of lists of strings around given pattern

Regular expressions are a powerful tool, but they’re somewhat notorious for being
difficult to read and debug. We close with some advice for using regexes:

• Develop your regular expression on simple test strings to see what the pattern
matches.

• If a pattern matches nothing, try weakening it by dropping part of the pattern.
Then tighten it incrementally to see how the matching evolves. (Online regex-
checking tools can be very helpful here.)

• Make the pattern only as specific as it needs to be for the data at hand.
• Use raw strings whenever possible for cleaner patterns, especially when a pattern

includes a backslash.
• When you have lots of long strings, consider using compiled patterns because

they can be faster to match (see compile() in the re library).

In the next section, we carry out an example text analysis. We clean the data using
regular expressions and string manipulation, convert the text into quantitative data,
and analyze the text via these derived quantities.

Text Analysis
So far, we’ve used Python methods and regular expressions to clean short text fields
and strings. In this section, we analyze entire documents using a technique called text
mining, which transforms free-form text into a quantitative representation to uncover
meaningful patterns and insights.

Text mining is a deep topic. Instead of a comprehensive treatment, we introduce a
few key ideas through an example, where we analyze the State of the Union speeches
from 1790 to 2022. Every year, the US president gives a State of the Union speech to
Congress. These speeches talk about current events in the country and make recom‐
mendations for Congress to consider. The American Presidency Project makes these
speeches available online.

Let’s begin by opening the file that has all of the speeches:

from pathlib import Path

text = Path('data/stateoftheunion1790-2022.txt').read_text()

Text Analysis | 329

https://oreil.ly/JbpO4

At the beginning of this chapter, we saw that each speech in the data begins with a
line with three asterisks: ***. We can use a regular expression to count the number of
times the string *** appears:

import re
num_speeches = len(re.findall(r"***", text))
print(f'There are {num_speeches} speeches total')

There are 232 speeches total

In text analysis, a document refers to a single piece of text that we want to analyze.
Here, each speech is a document. We split apart the text variable into its individual
documents:

records = text.split("***")

Then we can put the speeches into a dataframe:

def extract_parts(speech):
 speech = speech.strip().split('\n')[1:]
 [name, date, *lines] = speech
 body = '\n'.join(lines).strip()
 return [name, date, body]

def read_speeches():
 return pd.DataFrame([extract_parts(l) for l in records[1:]],
 columns = ["name", "date", "text"])

df = read_speeches()
df

 name date text
0 George Washington January 8, 1790 Fellow-Citizens of the Senate and House of Rep...
1 George Washington December 8, 1790 Fellow-Citizens of the Senate and House of Rep...
2 George Washington October 25, 1791 Fellow-Citizens of the Senate and House of Rep...
...
229 Donald J. Trump February 4, 2020 Thank you very much. Thank you. Thank you very...
230 Joseph R. Biden, Jr. April 28, 2021 Thank you. Thank you. Thank you. Good to be ba...
231 Joseph R. Biden, Jr. March 1, 2022 Madam Speaker, Madam Vice President, our First...

232 rows × 3 columns

330 | Chapter 13: Working with Text

Now that we have the speeches loaded into a dataframe, we want to transform the
speeches to see how they have changed over time. Our basic idea is to look at the
words in the speeches—if two speeches contain very different words, our analysis
should tell us that. With some kind of measure of document similarity, we can see
how the speeches differ from one another.

There are a few problems in the documents that we need to take care of first:

• Capitalization shouldn’t matter: Citizens and citizens should be considered
the same word. We can address this by lowercasing the text.

• There are unspoken remarks in the text: [laughter] points out where the audi‐
ence laughed, but these shouldn’t count as part of the speech. We can address this
by using a regex to remove text within brackets: \[[^\]]+\]. Remember that \
[and \] match the literal left and right brackets, and [^\]] matches any charac‐
ter that isn’t a right bracket.

• We should take out characters that aren’t letters or whitespace: some speeches
talk about finances, but a dollar amount shouldn’t count as a word. We can use
the regex [^a-z\s] to remove these characters. This regex matches any character
that isn’t a lowercase letter (a-z) or a whitespace character (\s):

def clean_text(df):
 bracket_re = re.compile(r'\[[^\]]+\]')
 not_a_word_re = re.compile(r'[^a-z\s]')
 cleaned = (df['text'].str.lower()
 .str.replace(bracket_re, '', regex=True)
 .str.replace(not_a_word_re, ' ', regex=True))
 return df.assign(text=cleaned)

df = (read_speeches()
 .pipe(clean_text))
df

 name date text

0 George Washington January 8, 1790 fellow citizens of the senate and house of rep...

1 George Washington December 8, 1790 fellow citizens of the senate and house of rep...

2 George Washington October 25, 1791 fellow citizens of the senate and house of rep...

...

229 Donald J. Trump February 4, 2020 thank you very much thank you thank you very...

230 Joseph R. Biden, Jr. April 28, 2021 thank you thank you thank you good to be ba...

231 Joseph R. Biden, Jr. March 1, 2022 madam speaker madam vice president our first...

232 rows × 3 columns

Text Analysis | 331

Next, we look at some more complex issues:

• Stop words like is, and, the, and but appear so often that we would like to just
remove them.

• argue and arguing should count as the same word, even though they appear dif‐
ferently in the text. To address this, we’ll use word stemming, which transforms
both words to argu.

To handle these issues, we can use built-in methods from the nltk library.

Finally, we transform the speeches into word vectors. A word vector represents a
document using a vector of numbers. For example, one basic type of word vector
counts up how many times each word appears in the text, as depicted in Figure 13-2.

Figure 13-2. Bag-of-words vectors for three small example documents

This simple transform is called bag-of-words, and we apply it on all of our speeches.
Then we calculate the term frequency-inverse document frequency (tf-idf for short) to
normalize the counts and measure the rareness of a word. The tf-idf puts more
weight on words that only appear in a few documents. The idea is that if just a few
documents mention the word sanction, say, then this word is extra useful for distin‐
guishing documents from each other. The scikit-learn library has a complete
description of the transform and an implementation, which we use.

After applying these transforms, we have a two-dimensional array, speech_vectors.
Each row of this array is one speech transformed into a vector:

import nltk
nltk.download('stopwords')
nltk.download('punkt')

from nltk.stem.porter import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer

stop_words = set(nltk.corpus.stopwords.words('english'))
porter_stemmer = PorterStemmer()

def stemming_tokenizer(document):
 return [porter_stemmer.stem(word)
 for word in nltk.word_tokenize(document)

332 | Chapter 13: Working with Text

https://www.nltk.org
https://oreil.ly/3A6a5

 if word not in stop_words]

tfidf = TfidfVectorizer(tokenizer=stemming_tokenizer)
speech_vectors = tfidf.fit_transform(df['text'])

speech_vectors.shape

(232, 13211)

We have 232 speeches, and each speech was transformed into a length-13,211 vector.
To visualize these speeches, we use a technique called principal component analysis to
represent the data table of 13,211 features by a new set of features that are orthogonal
to one another. The first vector accounts for the maximum variation in the original
features, the second for the maximum variance that is orthogonal to the first, and so
on. Often the first two components, which we can plot as pairs of points, reveal clus‐
ters and outliers.

Next, we plot the first two principal components. Each point is one speech, and we’ve
colored the points according to the year of the speech. Points that are close together
represent similar speeches, and points that are far away from one another represent
dissimilar speeches:

We see a clear difference in speeches over time—speeches given in the 1800s used
very different words than speeches given after 2000. It’s also interesting to see that the
speeches cluster tightly in the same time period. This suggests that speeches within
the same period sound relatively similar, even though the speakers were from differ‐
ent political parties.

Text Analysis | 333

This section gave a whirlwind introduction to text analysis. We used text manipula‐
tion tools from previous sections to clean up the presidential speeches. Then we used
more advanced techniques like stemming, the tf-idf transform, and principal compo‐
nent analysis to compare speeches. Although we don’t have enough space in this book
to cover all of these techniques in detail, we hope that this section piqued your inter‐
est in the exciting world of text analysis.

Summary
This chapter introduced techniques for working with text to clean and analyze data,
including string manipulation, regular expressions, and document analysis. Text data
has rich information about how people live, work, and think. But this data is also
hard for computers to use—think about all the creative ways people manage to spell
the same word. The techniques in this chapter let us correct typos, extract features
from logs, and compare documents.

We don’t recommend you use regular expressions to:

• Parse hierarchical structures such as JSON or HTML; use a parser instead
• Search for complex properties, like palindromes and balanced parentheses
• Validate a complex feature, such as a valid email address

Regular expressions, while powerful, are terrible at these types of tasks. However, in
our experience, even the basics of text manipulation can enable all sorts of interesting
analyses—a little bit goes a long way.

We have one final caution about regular expressions: they can be computationally
expensive. You will want to consider the trade-offs between these concise, clear
expressions and the overhead they create if they’re being put into production code.

The next chapter considers other sorts of data, such as data in binary formats, and the
highly structured text of JSON and HTML. Our focus will be on loading these data
into dataframes and other Python data structures.

334 | Chapter 13: Working with Text

CHAPTER 14

Data Exchange

Data can be stored and exchanged in many different formats. Thus far, we’ve focused
on plain-text delimited and fixed-width formats (Chapter 8). In this chapter, we
expand our horizons a bit and introduce a few other popular formats. While CSV,
TSV, and FWF files are useful for organizing data into a dataframe, other file formats
can save space or represent more complex data structures. Binary files (binary is a
term for formats that aren’t plaintext) can be more economical than plain-text data
sources. For example, in this chapter we introduce NetCDF, a popular binary format
for exchanging large amounts of scientific data. Other plain-text formats like JSON
and XML can organize data in ways that are more general and useful for complex
data structures. Even HTML web pages, a close cousin to XML, often contain useful
information that we can scrape and wrangle into shape for analysis.

In this chapter, we introduce these popular formats, describe a mental model for their
organization, and provide examples. In addition to introducing these formats, we
cover programmatic ways to acquire data online. Before the internet, data scientists
had to physically move disk drives to share data with one another. Now we can freely
retrieve datasets from computers across the world. We introduce HTTP, the primary
communication protocol for the web, and REST, an architecture to transfer data. By
learning a bit about these web technologies, we can take better advantage of the web
as a data source.

Throughout this book, we have set an example of reproducible code for wrangling,
exploring, and modeling with data. In this chapter, we address how to acquire data
that are available online in a reproducible fashion.

We begin with a description of NetCDF, followed by JSON. Then, after an overview
of web protocols for data exchange, we wrap up the chapter with an introduction to
XML, HTML, and XPath, a tool for extracting content from these types of files.

335

NetCDF Data
The Network Common Data Form (NetCDF) is a convenient and efficient format for
storing array-oriented scientific data. A mental model for this format represents a
variable by a multidimensional grid of values. The diagram in Figure 14-1 shows the
concept. A variable such as rainfall is recorded daily at places around the globe. We
can imagine these rainfall values arranged in a cube with longitude running along
one side of the cube, latitude along another, and date in the third dimension. Each
cell in the cube holds the rainfall recorded for one day at a particular location. A
NetCDF file also contains information, which we call metadata, about the dimensions
of the cube. The same information would be organized quite differently in a data‐
frame, where we would need three features for latitude, longitude, and date for each
rainfall measurement. This would mean repeating lots of data. With a NetCDF file,
we don’t need to repeat the latitude and longitude values for each day, nor the dates
for each location.

Figure 14-1. This diagram represents a model for NetCDF data. The data are organized
into a three-dimensional array that contains recordings of rainfall at locations in time
(latitude, longitude, and time). The “X” marks one rainfall measurement for a specific
location on a particular date.

NetCDF has several other advantages, in addition to being more compact:

Scalable
It provides efficient access to subsets of the data.

Appendable
You can easily add new data without redefining the structure.

Sharable
It’s a common format that’s independent of the coding language and operating
system.

336 | Chapter 14: Data Exchange

https://oreil.ly/_qZGj

Self-describing
The source file contains both a description of the data’s organization and the data
itself.

Community
The tools are made available by a community of users.

The NetCDF format is an example of binary data—data that can’t
directly be read into a text editor like vim or Visual Studio Code,
unlike text formats like CSV. There are a multitude of other binary
data formats, including SQLite databases (from Chapter 7),
Feather, and Apache Arrow. Binary data formats provide flexibility
in how datasets are stored, but they also typically need special tools
to open and read them in.

NetCDF variables are not limited to three dimensions. For example, elevation could
be added to our earth science application so that we have recordings of, say, tempera‐
ture, in time, latitude, longitude, and elevation. And dimensions need not correspond
to physical dimensions. Climate scientists often run several models and store the
model number in a dimension along with the model output. While NetCDF was orig‐
inally developed for atmospheric scientists at the University Corporation for Atmos‐
pheric Research (UCAR), the format has gained popularity and is now used at
thousands of educational, research, and government sites around the world. And the
applications have expanded to other areas, such as astronomy and physics with the
Smithsonian/NASA Astrophysics Data System (ADS) and medical imaging with
Medical Image NetCDF (MINC).

NetCDF files have three basic components: dimensions, variables, and various sorts
of metadata. The variable contains what we think of as the data, such as the rainfall
recordings. Each variable has a name, storage type, and shape, meaning the number
of dimensions. The dimensions component gives each dimension’s name and number
of grid points. Additional information is provided by the coordinates—in particular,
the points at which the measurements are made, such as for longitude, where these
might be 0.0, 0.25, 0.50, …, 359.75. Other metadata include attributes. Attributes for a
variable can hold ancillary information about the variables, and other attributes con‐
tain global information about the file, such as who published the dataset, their contact
information, and permissions for using the data. This global information is critical to
ensure reproducible results.

The following example examines the components of a particular NetCDF file and
demonstrates how to extract portions of data from variables.

The Climate Data Store provides a collection of datasets from various climate sectors
and services. We visited their site and requested measurements of temperature and

NetCDF Data | 337

https://oreil.ly/kg9kV
https://oreil.ly/6t3gJ
https://oreil.ly/NAhRW

total precipitation for a two-week period in December 2022. Let’s walk through a
brief examination of these data to get a sense of the organization of the components
in the file, how to extract subsets, and how to make visualizations.

The data are in the NetCDF file CDS_ERA5_22-12.nc. Let’s first figure out how large
the file is:

from pathlib import Path
import os

file_path = Path() / 'data' / 'CDS_ERA5_22-12.nc'

kib = 1024
size = os.path.getsize(file_path)
np.round(size / kib**3)

2.0

Despite having only three variables (total precipitation, rain rate, temperature) for
two weeks, the file is two GiB in size! These climate sources often tend to be quite
large.

The xarray package is useful for working with array-like data and, in particular,
NetCDF. We use its functionality to explore the components of our climate file. First
we open the file:

import xarray as xr

ds = xr.open_dataset(file_path)

Now let’s check the dimensions component of the file:

ds.dims

Frozen(SortedKeysDict({'longitude': 1440, 'latitude': 721, 'time': 408}))

As in Figure 14-1, our file has three dimensions: longitude, latitude, and time. The
size of each dimension tells us that there are over 400,000 cells of data values
(1440 × 721 × 408). If these data were in a dataframe, then it would have 400,000
rows with latitude, longitude, and time columns in great repetition! Instead, we only
need their values once, and the coordinates component gives them to us:

ds.coords

Coordinates:
 * longitude (longitude) float32 0.0 0.25 0.5 0.75 ... 359.0 359.2 359.5 359.8
 * latitude (latitude) float32 90.0 89.75 89.5 89.25 ... -89.5 -89.75 -90.0
 * time (time) datetime64[ns] 2022-12-15 ... 2022-12-31T23:00:00

Each variable in our file is three-dimensional. Actually, a variable doesn’t have to have
all three dimensions, but in our example they do:

ds.data_vars

338 | Chapter 14: Data Exchange

Data variables:
 t2m (time, latitude, longitude) float32 ...
 lsrr (time, latitude, longitude) float32 ...
 tp (time, latitude, longitude) float32 ...

Metadata for a variable provides the units and a longer description, while metadata
for the source gives us information such as when we retrieved the data:

ds.tp.attrs

{'units': 'm', 'long_name': 'Total precipitation'}

ds.attrs

{'Conventions': 'CF-1.6',
 'history': '2023-01-19 19:54:37 GMT by grib_to_netcdf-2.25.1: /opt/ecmwf/mars-
client/bin/grib_to_netcdf.bin -S param -o /cache/data6/
adaptor.mars.internal-1674158060.3800251-17201-13-c46a8ac2-f1b6-4b57-
a14e-801c001f7b2b.nc /cache/tmp/c46a8ac2-f1b6-4b57-a14e-801c001f7b2b-
adaptor.mars.internal-1674158033.856014-17201-20-tmp.grib'}

By keeping all of these pieces of information in the source file itself, we don’t risk los‐
ing it or having the description get out of sync with the data.

Like with pandas, xarray provides many different ways to select portions of the data
to work with. We show two examples. First we focus on one specific location and
examine the total precipitation in time with a line plot:

plt.figure()
(ds.sel(latitude=37.75, longitude=237.5).tp * 100).plot(figsize=(8,3))
plt.xlabel('')
plt.ylabel('Total precipitation (cm)')
plt.show();

<Figure size 288x216 with 0 Axes>

NetCDF Data | 339

Next we choose one date, December 31, 2022, at 1 p.m., and narrow down the latitude
and longitude to the continental US to make a map of temperature:

import datetime
one_day = datetime.datetime(2022, 12, 31, 13, 0, 0)

min_lon, min_lat, max_lon, max_lat = 232, 21, 300, 50

mask_lon = (ds.longitude > min_lon) & (ds.longitude < max_lon)
mask_lat = (ds.latitude > min_lat) & (ds.latitude < max_lat)

ds_oneday_us = ds.sel(time=one_day).t2m.where(mask_lon & mask_lat, drop=True)

Like loc for dataframes, sel returns a new DataArray whose data is determined by
the index labels along the specified dimension, which for this example is the date.
And like np.where, xr.where returns elements depending on the logical condition
provided. We use drop=True to reduce the size of the dataset.

Let’s make a choropleth map of temperature, where color represents the temperature:

ds_oneday_us.plot(figsize=(8,4))

We can make out the shape of the US, the warm Caribbean, and the colder mountain
ranges from this map.

We wrap up by closing the file:

ds.close()

This brief introduction to NetCDF is meant to touch on the basic concepts. Our main
goal is to show that other kinds of data formats exist and can have advantages over
plain-text read into a dataframe. For interested readers, NetCDF has a rich ecosystem
of packages and functionality. For example, in addition to the xarray module,

340 | Chapter 14: Data Exchange

NetCDF files can be read with other Python modules like netCDF4 and gdal. The
NetCDF community has also provided command-line tools for interacting with
NetCDF data. And to make visualizations and maps, options include matplotlib,
iris, which is built on top of netCDF4, and cartopy.

Next we consider the JSON format, which offers more flexibility to represent hier‐
archical data than the CSV and FWF formats.

JSON Data
JavaScript Object Notation (JSON) is a popular format for exchanging data on the
web. This plain-text format has a simple and flexible syntax that aligns well with
Python dictionaries, and it is easy for machines to parse and people to read.

Briefly, JSON has two main structures, the object and the array:

Object
Like a Python dict, a JSON object is an unordered collection of name-value
pairs. These pairs are contained in curly braces; each is formatted as
"name":value, and separated by commas.

Array
Like a Python list, a JSON array is an ordered collection of values contained in
square brackets, where the values are unnamed and separated by commas.

The values in an object and array can be of different types and can be nested. That is,
an array can contain objects and vice versa. The primitive types are limited to string
in double quotes, number in text representation, logical as true or false, and null.

The following short JSON file demonstrates all of these syntactical features:

{"lender_id":"matt",
 "loan_count":23,
 "status":[2, 1, 3],
 "sponsored": false,
 "sponsor_name": null,
 "lender_dem":{"sex":"m","age":77 }
}

Here we have an object that contains six name-value pairs. The values are heteroge‐
neous; four are primitive values: string, number, logical, and null. The status value
consists of an array of three (ordered) numbers, and lender_dem is an object with
demographic information.

The built-in json package can be used to work with JSON files in Python. For exam‐
ple, we can load this small file into a Python dictionary:

import json
from pathlib import Path

JSON Data | 341

https://oreil.ly/UlX_k
https://oreil.ly/fKeQh
https://oreil.ly/ozNrI
https://oreil.ly/9N7y7

file_path = Path() / 'data' / 'js_ex' / 'ex.json'

ex_dict = json.load(open(file_path))
ex_dict

{'lender_id': 'matt',
 'loan_count': 23,
 'status': [2, 1, 3],
 'sponsored': False,
 'sponsor_name': None,
 'lender_dem': {'sex': 'm', 'age': 77}}

The dictionary matches the format of the Kiva file. This format doesn’t naturally
translate to a dataframe. The json_normalize method can organize this semistruc‐
tured JSON data into a flat table:

ex_df = pd.json_normalize(ex_dict)
ex_df

 lender_id loan_count status sponsored sponsor_name lender_dem.sex lender_dem.age
0 matt 23 [2, 1, 3] False None m 77

Notice how the third element in this one-row dataframe is a list, whereas the nested
object was converted into two columns.

There’s a tremendous amount of flexibility in how data can be structured in JSON,
which means that if we want to create a dataframe from JSON content, we need to
understand how the data are organized in the JSON file. We provide three structures
that translate easily into a dataframe in the next example.

The list of PurpleAir sites used in the case study in Chapter 12 was JSON-formatted.
In that chapter, we didn’t call attention to the format and simply read the file contents
into a dictionary with the json library’s load method and then into a dataframe.
Here, we have simplified that file while maintaining the general structure so that it’s
easier to examine.

We begin with an examination of the original file, and then reorganize it into two
other JSON structures that might also be used to represent a dataframe. With these
examples we aim to show the flexibility of JSON. The diagrams in Figure 14-2 give
representations of the three possibilities.

342 | Chapter 14: Data Exchange

Figure 14-2. Three different approaches for a JSON-formatted file to store a dataframe.

The leftmost dataframe in the diagram shows an organization by rows. Each row is
an object of named values where the name corresponds to the column name of the
dataframe. Rows would then be collected in an array. This structure coincides with
that of the original file. In the following code, we display the file contents:

{"Header": [
 {"status": "Success",
 "request_time": "2022-12-29T01:48:30-05:00",
 "url": "https://aqs.epa.gov/data/api/dailyData/...",
 "rows": 4
 }
],
 "Data": [
 {"site": "0014", "date": "02-27", "aqi": 30},
 {"site": "0014", "date": "02-24", "aqi": 17},
 {"site": "0014", "date": "02-21", "aqi": 60},
 {"site": "0014", "date": "01-15", "aqi": null}
]
}

We see that the file consists of one object with two elements, named Header and Data.
The Data element is an array with an element for each row in the dataframe, and as
described earlier each element is an object. Let’s load the file into a dictionary and
check its contents (see Chapter 8 for more on finding a pathname to a file and print‐
ing its contents):

from pathlib import Path
import os

epa_file_path = Path('data/js_ex/epa_row.json')

data_row = json.loads(epa_file_path.read_text())
data_row

{'Header': [{'status': 'Success',
 'request_time': '2022-12-29T01:48:30-05:00',
 'url': 'https://aqs.epa.gov/data/api/dailyData/...',
 'rows': 4}],
 'Data': [{'site': '0014', 'date': '02-27', 'aqi': 30},

JSON Data | 343

 {'site': '0014', 'date': '02-24', 'aqi': 17},
 {'site': '0014', 'date': '02-21', 'aqi': 60},
 {'site': '0014', 'date': '01-15', 'aqi': None}]}

We can quickly convert the array of objects into a dataframe with the following call:

pd.DataFrame(data_row["Data"])

 site date aqi
0 0014 02-27 30.0
1 0014 02-24 17.0
2 0014 02-21 60.0
3 0014 01-15 NaN

The middle diagram in Figure 14-2 takes a column approach to organizing the data.
Here the columns are provided as arrays and collected into an object with names that
match the column names. The following file demonstrates the concept:

epa_col_path = Path('data/js_ex/epa_col.json')
print(epa_col_path.read_text())

{"site":["0014", "0014", "0014", "0014"],
"date":["02-27", "02-24", "02-21", "01-15"],
"aqi":[30,17,60,null]}

Since pd.read_json() expects this format, we can read the file into a dataframe
directly without needing to first load it into a dictionary:

pd.read_json(epa_col_path)

 site date aqi
0 14 02-27 30.0
1 14 02-24 17.0
2 14 02-21 60.0
3 14 01-15 NaN

Lastly, we organize the data into a structure that resembles a matrix (the diagram on
the right in the figure) and separately provide the column names for the features. The
data matrix is organized as an array of arrays:

{'vars': ['site', 'date', 'aqi'],
 'data': [['0014', '02-27', 30],
 ['0014', '02-24', 17],
 ['0014', '02-21', 60],
 ['0014', '01-15', None]]}

We can provide vars and data to create the dataframe:

pd.DataFrame(data_mat["data"], columns=data_mat["vars"])

344 | Chapter 14: Data Exchange

 site date aqi
0 0014 02-27 30.0
1 0014 02-24 17.0
2 0014 02-21 60.0
3 0014 01-15 NaN

We’ve included these examples to show the versatility of JSON. The main takeaway is
that JSON files can arrange data in different ways, so we typically need to examine the
file before we can read the data into a dataframe successfully. JSON files are very
common for data stored on the web: the examples in this section were files down‐
loaded from the PurpleAir and Kiva websites. Although we downloaded the data
manually in this section, we often want to download many datafiles at a time, or we
want a reliable and reproducible record of the download. In the next section, we
introduce HTTP, a protocol that will let us write programs to download data from the
web automatically.

HTTP
HTTP (HyperText Transfer Protocol) is an all-purpose infrastructure to access
resources on the web. There are a tremendous number of datasets available to us on
the internet, and with HTTP we can acquire these datasets.

The internet allows computers to communicate with each other, and HTTP places a
structure on the communication. HTTP is a simple request-response protocol, where a
client submits a request to a server in a specially formatted text message, and the
server sends a specially formatted text response back. The client might be a web
browser or our Python session.

An HTTP request has two parts: a header and an optional body. The header must fol‐
low a specific syntax. An example request to obtain the Wikipedia page shown in
Figure 14-3 looks like the following:

GET /wiki/1500_metres_world_record_progression HTTP/1.1
Host: en.wikipedia.org
User-Agent: curl/7.65.2
Accept: */*
{blank_line}

The first line contains three pieces of information: it starts with the method of the
request, which is GET; this is followed by the URL of the web page we want; and last is
the protocol and version. Each of the three lines that follow give auxiliary informa‐
tion for the server. This information has the format name: value. Finally, a blank line
marks the end of the header. Note that we’ve marked the blank line with
{blank_line} in the preceding snippet; in the actual message, this is a blank line.

HTTP | 345

Figure 14-3. Screenshot of the Wikipedia page with data on the world record for the
1,500-meter race

The client’s computer sends this message over the internet to the Wikipedia server.
The server processes the request and sends a response, which also consists of a header
and body. The header for the response looks like this:

< HTTP/1.1 200 OK
< date: Fri, 24 Feb 2023 00:11:49 GMT
< server: mw1369.eqiad.wmnet
< x-content-type-options: nosniff
< content-language: en
< vary: Accept-Encoding,Cookie,Authorization
< last-modified: Tue, 21 Feb 2023 15:00:46 GMT
< content-type: text/html; charset=UTF-8
...
< content-length: 153912
{blank_line}

The first line states that the request completed successfully; the status code is 200. The
next lines give additional information for the client. We shortened this header quite a
bit to focus on just a few pieces of information that tell us the content of the body is
HTML and uses UTF-8 encoding, and the content is 153,912 characters long. Finally,
the blank line at the end of the header tells the client that the server has finished send‐
ing header information, and the response body follows.

346 | Chapter 14: Data Exchange

HTTP is used in almost every application that interacts with the internet. For exam‐
ple, if you visit this same Wikipedia page in your web browser, the browser makes the
same basic HTTP request as the one just shown. When it receives the response, it dis‐
plays the body in your browser’s window, which looks like the screenshot in
Figure 14-3.

In practice, we do not write out full HTTP requests ourselves. Instead, we use tools
like the requests Python library to construct requests for us. The following code
constructs the HTTP request for the page in Figure 14-3 for us. We simply pass the
URL to requests.get. The “get” in the name indicates the GET method is being used:

import requests

url_1500 = 'https://en.wikipedia.org/wiki/1500_metres_world_record_progression'

resp_1500 = requests.get(url_1500)

We can check our request’s status to make sure the server completed it successfully:

resp_1500.status_code

200

We can thoroughly examine the request and response through the object’s attributes.
As an example, let’s take a look at the key-value pairs in the header in our request:

for key in resp_1500.request.headers:
 print(f'{key}: {resp_1500.request.headers[key]}')

User-Agent: python-requests/2.25.1
Accept-Encoding: gzip, deflate
Accept: */*
Connection: keep-alive

Although we did not specify any header information in our function call,
request.get provided some basic information for us. If we need to send special
header information, we can specify them in our call.

Now let’s examine the header of the response we received from the server:

len(resp_1500.headers)

20

As we saw earlier, there’s a lot of header information in the response. We just display
the date, content-type, and content-length:

keys = ['date', 'content-type', 'content-length']
for key in keys:
 print(f'{key}: {resp_1500.headers[key]}')

date: Fri, 10 Mar 2023 01:54:13 GMT
content-type: text/html; charset=UTF-8
content-length: 23064

HTTP | 347

Finally, we display the first several hundred characters of the response body (the
entire content is too long to display nicely here):

resp_1500.text[:600]

'<!DOCTYPE html>\n<html class="client-nojs vector-feature-language-in-header-
enabled vector-feature-language-in-main-page-header-disabled vector-feature-
language-alert-in-sidebar-enabled vector-feature-sticky-header-disabled vector-
feature-page-tools-disabled vector-feature-page-tools-pinned-disabled vector-
feature-toc-pinned-enabled vector-feature-main-menu-pinned-disabled vector-
feature-limited-width-enabled vector-feature-limited-width-content-enabled"
lang="en" dir="ltr">\n<head>\n<meta charset="UTF-8"/>\n<title>1500 metres world
record progression - Wikipedia</title>\n<script>document.documentE'

We confirm that the response is an HTML document and that it contains the title
1500 metres world record progression - Wikipedia. We have successfully
retrieved the web page shown in Figure 14-3.

Our HTTP request has been successful, and the server has returned a status code of
200. There are hundreds of other HTTP status codes. Thankfully, they are grouped
into categories to make them easier to remember (see Table 14-1).

Table 14-1. Response status codes

Code Type Description
100s Informational More input is expected from the client or server (100 Continue, 102 Processing, etc.).

200s Success The client’s request was successful (200 OK, 202 Accepted, etc.).

300s The redirection Requested URL is located elsewhere and may need further action from the user (300 Multiple
Choices, 301 Moved Permanently, etc.).

400s Client error A client-side error occurred (400 Bad Request, 403 Forbidden, 404 Not Found, etc.).

500s Server error A server-side error occurred or the server is incapable of performing the request (500 Internal Server
Error, 503 Service Unavailable, etc.).

One common error code that might look familiar is 404, which tells us we have
requested a resource that doesn’t exist. We send such a request here:

url = "https://www.youtube.com/404errorwow"
bad_loc = requests.get(url)
bad_loc.status_code

404

The request we made to retrieve the web page was a GET HTTP request. There are
four main HTTP request types: GET, POST, PUT, and DELETE. The two most commonly
used methods are GET and POST. We just used GET to retrieve the web page:

resp_1500.request.method

'GET'

348 | Chapter 14: Data Exchange

The POST request is used to send specific information from the client to the server. In
the next section, we use POST to retrieve data from Spotify.

REST
Web services are increasingly implementing the REST (REpresentational State Trans‐
fer) architecture for developers to access their data. These include social media plat‐
forms like Twitter and Instagram, music apps like Spotify, real estate apps like Zillow,
scientific sources of data such as the Climate Data Store, government data at the
World Bank, and many, many more. The basic idea behind REST is that every URL
identifies a resource (data).

REST is stateless, meaning that the server does not remember the client from one
request to the next. This aspect of REST has a few advantages: the server and the cli‐
ent can understand any message received without seeing previous messages, code can
be changed on either the client or server side without impacting the operation of the
service, and access is scalable, fast, modular, and independent.

In this section, we work through an example to retrieve data from Spotify.

Our example follows Steven Morse’s blog post, where we use both POST and GET
methods in a series of requests to retrieve data on songs by The Clash.

In practice, we wouldn’t write GET and POST requests ourselves for
Spotify. Instead, we’d use the spotipy library, which has functions
to interact with the Spotify web API. That said, data scientists can
often find themselves in the position of wanting to access data
available via REST that doesn’t have a Python library available, so
this section shows how to get data from a RESTful website like
Spotify.

Typically, a REST application provides documentation with examples on how to
request its data. Spotify has extensive documentation geared to developers who want
to build an app, but we can also access the service just to explore data. To do that, we
need to register as a developer and get a client ID and secret. We then use these to
identify us to Spotify in our HTTP requests.

After we register, we can begin to request data. This process has two steps: authenti‐
cate and request resources.

To authenticate, we issue a POST request, where we give the web service our client ID
and secret. We provide these in the header of the request. In return, we receive a
token from the server that authorizes us to make requests.

We begin the process and authenticate:

REST | 349

https://oreil.ly/zI-5z
https://www.theclash.com
https://oreil.ly/fPQX0
https://oreil.ly/NH4ZO

AUTH_URL = 'https://accounts.spotify.com/api/token'

import requests
auth_response = requests.post(AUTH_URL, {
 'grant_type': 'client_credentials',
 'client_id': CLIENT_ID,
 'client_secret': CLIENT_SECRET,
})

We provided our ID and secret in key-value pairs in the header of our POST request.
We can check the status of our request to see if it was successful:

auth_response.status_code

200

Now let’s check the type of content in the body of the response:

auth_response.headers['content-type']

'application/json'

The body of the response contains the token that we need in the next step to get the
data. Since this information is JSON-formatted, we can check the keys and retrieve
the token:

auth_response_data = auth_response.json()
auth_response_data.keys()

dict_keys(['access_token', 'token_type', 'expires_in'])

access_token = auth_response_data['access_token']
token_type = auth_response_data['token_type']

Notice that we hid our ID and secret so that others reading this book can’t imitate us.
This request won’t be successful without a valid ID and secret. For example, here we
make up an ID and secret and try to authenticate:

bad_ID = '0123456789'
bad_SECRET = 'a1b2c3d4e5'

auth_bad = requests.post(AUTH_URL, {
 'grant_type': 'client_credentials',
 'client_id': bad_ID, 'client_secret': bad_SECRET,
})

We check the status of this “bad” request:

auth_bad.status_code

400

According to Table 14-1, a code of 400 means that we issued a bad request. For one
more example, Spotify shuts us down if we take too much time making requests. We
ran into this issue a couple of times when writing this section and received the fol‐
lowing code, telling us our token had expired:

350 | Chapter 14: Data Exchange

res_clash.status_code

401

Now for the second step, let’s get some data.

Requests for resources can be made via GET for Spotify. Other services may require
POSTs. Requests must include the token we received from the web service when we
authenticated, which we can use over and over. We pass the access token in the
header of our GET request. We construct the name-value pairs as a dictionary:

headers = {"Authorization": f"{token_type} {access_token}"}

The developer API tells us that an artist’s albums are available at URLs that look like
https://api.spotify.com/v1/artists/3RGLhK1IP9jnYFH4BRFJBS/albums, where the code
between artists/ and /albums is an artist’s ID. This particular code is for The Clash.
Information about the tracks on an album is available at a URL that looks like https://
api.spotify.com/v1/albums/49kzgMsxHU5CTeb2XmFHjo/tracks, where the identifier
here is for the album.

If we know the ID for an artist, we can retrieve the IDs for its albums, and in turn, we
can get data about the tracks on the albums. Our first step was to get the ID for The
Clash from Spotify’s site:

artist_id = '3RGLhK1IP9jnYFH4BRFJBS'

Our first data request retrieves the group’s albums. We construct the URL using
artist_id and pass our access token in the header:

BASE_URL = "https://api.spotify.com/v1/"

res_clash = requests.get(
 BASE_URL + "artists/" + artist_id + "/albums",
 headers=headers,
 params={"include_groups": "album"},
)

res_clash.status_code

200

Our request was successful. Now let’s check the content-type of the response body:

res_clash.headers['content-type']

'application/json; charset=utf-8'

The resource returned is JSON, so we can load it into a Python dictionary:

clash_albums = res_clash.json()

REST | 351

After poking around a bit, we can find that album information is in the items ele‐
ment. The keys for the first album are:

clash_albums['items'][0].keys()

dict_keys(['album_group', 'album_type', 'artists', 'available_markets', 'exter-
nal_urls', 'href', 'id', 'images', 'name', 'release_date', 'release_date_preci-
sion', 'total_tracks', 'type', 'uri'])

Let’s print the album IDs, names, and release dates for a few albums:

for album in clash_albums['items'][:4]:
 print('ID: ', album['id'], ' ', album['name'], '----', album['release_date'])

ID: 7nL9UERtRQCB5eWEQCINsh Combat Rock + The People's Hall ---- 2022-05-20
ID: 3un5bLdxz0zKhiZXlmnxWE Live At Shea Stadium ---- 2008-08-26
ID: 4dMWTj1OkiCKFN5yBMP1vS Live at Shea Stadium (Remastered) ---- 2008
ID: 1Au9637RH9pXjBv5uS3JpQ From Here To Eternity Live ---- 1999-10-04

We see that some albums are remastered and others are live performances. Next, we
cycle through the albums, pick up their IDs, and for each album we request informa‐
tion about the tracks:

tracks = []

for album in clash_albums['items']:
 tracks_url = f"{BASE_URL}albums/{album['id']}/tracks"
 res_tracks = requests.get(tracks_url, headers=headers)
 album_tracks = res_tracks.json()['items']

 for track in album_tracks:
 features_url = f"{BASE_URL}audio-features/{track['id']}"
 res_feat = requests.get(features_url, headers=headers)
 features = res_feat.json()

 features.update({
 'track_name': track.get('name'),
 'album_name': album['name'],
 'release_date': album['release_date'],
 'album_id': album['id']
 })

 tracks.append(features)

Over a dozen features are available to explore on the tracks. Let’s close the example
with a plot of danceability and loudness of The Clash songs:

352 | Chapter 14: Data Exchange

This section covered REST APIs, which provide standardized approaches for pro‐
grams to download data. The example shown here downloaded JSON data. At other
times, the data from a REST request may be in an XML format. And sometimes a
REST API isn’t available for the data we want, and we must extract the data from web
pages themselves in HTML, a format similar to XML. We describe how to work with
these formats next.

XML, HTML, and XPath
The eXtensible Markup Language (XML) can represent all types of information, such
as data sent to and from web services, including web pages, spreadsheets, visual dis‐
plays like SVG, social network structures, word processing documents like Micro‐
soft’s docx, databases, and much more. For a data scientist, knowing a little about
XML can come in handy.

Despite its name, XML is not a language. Rather, it is a very general structure we can
use to define formats to represent and organize data. XML provides a basic structure
and syntax for these “dialects” or vocabularies. If you read or compose HTML, you
will recognize the format of XML.

The basic unit in XML is the element, which is also referred to as a node. An element
has a name and may have attributes, child elements, and text.

The following annotated snippet of an XML plant catalog provides an example of
these pieces (this content is adapted from W3Schools):

<catalog> The topmost node, aka root node.
 <plant> The first child of the root node.

XML, HTML, and XPath | 353

https://oreil.ly/qPa6s

 <common>Bloodroot</common> common is the first child of plant.
 <botanical>Sanguinaria canadensis</botanical>
 <zone>4</zone> This zone node has text content: 4.
 <light>Mostly Shady</light>
 <price curr="USD">$2.44</price> This node has an attribute.
 <availability date="0399"/> Empty nodes can be collapsed.
 </plant> Nodes must be closed.
 <plant> The two plant nodes are siblings.
 <common>Columbine</common>
 <botanical>Aquilegia canadensis</botanical>
 <zone>3</zone>
 <light>Mostly Shady</light>
 <price curr="CAD">$9.37</price>
 <availability date="0199"/>
 </plant>
</catalog>

We added the indentation to this snippet of XML to make it easier to see the struc‐
ture. It is not needed in the actual file.

XML documents are plain-text files with the following syntax rules:

• Each element begins with a start tag, like <plant>, and closes with an end tag of
the same name, like </plant>.

• XML elements can contain other XML elements.
• XML elements can be plain-text, like “Columbine” in <common>Columbine</
common>.

• XML elements can have optional attributes. The element <price curr=“CAD”>
has an attribute curr with value "CAD".

• In the special case when a node has no children, the end tag can be folded into
the start tag. An example is <availability date="0199"/>.

We call an XML document well formed when it follows certain rules. The most
important of these are:

• One root node contains all of the other elements in the document.
• Elements nest properly; an open node closes around all of its children and no

more.
• Tag names are case-sensitive.
• Attribute values have a name=“value” format with single or double quotes.

There are additional rules for a document to be well formed. These relate to white‐
space, special characters, naming conventions, and repeated attributes.

354 | Chapter 14: Data Exchange

The hierarchical nature of well-formed XML means it can be represented as a tree.
Figure 14-4 shows a tree representation of the plant catalog XML.

Figure 14-4. Hierarchy of an XML document; the lighter gray boxes represent text ele‐
ments and, by design, these cannot have child nodes

Like with JSON, an XML document is plaintext. We can read it with a plain-text
viewer, and it’s easy for machines to read and create XML content. The extensible
nature of XML allows content to be easily merged into higher-level container docu‐
ments and easily exchanged with other applications. XML also supports binary data
and arbitrary character sets.

As mentioned already, HTML looks a lot like XML. That’s no accident, and indeed,
XHTML is a subset of HTML that follows the rules of well-formed XML. Let’s return
to our earlier example of the Wikipedia page that we retrieved from the internet and

XML, HTML, and XPath | 355

show how to used XML tools to create a dataframe from the contents of one of its
tables.

Example: Scraping Race Times from Wikipedia
Earlier in this chapter, we used an HTTP request to retrieve the HTML page from
Wikipedia shown in Figure 14-3. The contents of this page are in HTML, which is
essentially an XML vocabulary. We can use the hierarchical structure of the page and
XML tools to access data in one of the tables and wrangle it into a dataframe. In par‐
ticular, we are interested in the second table in the page, a portion of which appears in
the screenshot in Figure 14-5.

Figure 14-5. Screenshot of the second table in a web page that contains the data we want
to extract

Before we work on this table, we provide a quick summary of the format for a basic
HTML table. Here is the HTML for a table with a header and two rows of three
columns:

<table>
 <tbody>
 <tr>
 <th>A</th><th>B</th><th>C</th>
 </tr>
 <tr>
 <td>1</td><td>2</td><td>3</td>
 </tr>
 <tr>
 <td>5</td><td>6</td><td>7</td>
 </tr>
 </tbody>
</table>

Notice how the table is laid out in rows with <tr> elements, and each cell in a row is a
<td> element that contains the text to be displayed in the table.

356 | Chapter 14: Data Exchange

Our first task is to create a tree structure from the content of the web page. To do this,
we use the lxml library, which provides access to the C-library libxml2 for handling
XML content. Recall that resp_1500 contains the response from our request, and the
page is in the body of the response. We can parse the web page into a hierarchical
structure with fromstring in the lxml.html module:

from lxml import html

tree_1500 = html.fromstring(resp_1500.content)

type(tree_1500)

lxml.html.HtmlElement

Now we can work with the document using its tree structure. We can find all the
tables in the HTML document with the following search:

tables = tree_1500.xpath('//table')
type(tables)

list

len(tables)

7

This search uses the XPath //table expression, which we soon describe, to search for
all table nodes anywhere in the document.

We found six tables in the document. If we examine the web page, including looking
at its HTML source via the browser, we can figure out that the second table in the
document contains the IAF-era times. This is the table we want. The screenshot in
Figure 14-5 shows that the first column contains the race times, the third holds
names, and the fourth has the dates of the races. We can extract each of these pieces
of information in turn. We do this with the following XPath expressions:

times = tree_1500.xpath('//table[3]/tbody/tr/td[1]/b/text()')
names = tree_1500.xpath('//table[3]/tbody/tr/td[3]/a/text()')
dates = tree_1500.xpath('//table[3]/tbody/tr/td[4]/text()')

type(times[0])

lxml.etree._ElementUnicodeResult

These return values behave like a list, but each value is an element of the tree. We can
convert them to strings:

date_str = [str(s) for s in dates]
name_str = [str(s) for s in names]

For the times, we want to transform them into seconds. The function get_sec does
this conversion. And we want to extract the race year from the date string:

def get_sec(time):
 """convert time into seconds."""

XML, HTML, and XPath | 357

 time = str(time)
 time = time.replace("+","")
 m, s = time.split(':')
 return float(m) * 60 + float(s)

time_sec = [get_sec(rt) for rt in times]
race_year = pd.to_datetime(date_str, format='%Y-%m-%d\n').year

We can create a dataframe and make a plot to show the progress in race times over
the years:

As you may have noticed, extracting data from an HTML page relies on careful
examination of the source to find where in the document the numbers that we’re after
are. We relied heavily on the XPath tool to do the extraction. Its elegant language is
quite powerful. We introduce it next.

XPath
When we work with XML documents, we typically want to extract data from them
and bring it into a dataframe. XPath can help here. XPath can recursively traverse an
XML tree to find elements. For example, we used the expression //table in the previ‐
ous example to locate all table nodes in our web page.

XPath expressions operate on the hierarchy of well-formed XML. They are succinct
and similar in format to the way files are located in a hierarchy of directories in a
computer filesystem. But they’re much more powerful. XPath is also similar to regu‐
lar expressions in that we specify patterns to match content. Like with regular expres‐
sions, it takes experience to compose correct XPath expressions.

358 | Chapter 14: Data Exchange

An XPath expression forms logical steps to identify and filter nodes in a tree. The
result is a node set where each node occurs at most once. The node set also has an
order that matches the order in which the nodes occur in the source; this can be quite
handy.

Each XPath expression is made up of one or more location steps, separated by a “/”.
Each location step has three parts—the axis, node test, and optional predicate:

• The axis specifies the direction to look in, such as down, up, or across the tree.
We exclusively use shortcuts for the axis. The default is to look down one step at
children in the tree. // says to look down the tree as far as possible, and .. indi‐
cates one step up to the parent.

• The node test identifies the name or the type of node to look for. This is typically
just a tag name or text() for text elements.

• A predicate acts like a filter to further restrict the node set. This is given in square
brackets, like [2], which keeps the second node in the node set, and [@date],
which keeps all nodes with a date attribute.

We can tack together location steps to create powerful search instructions. Table 14-2
provides some examples that cover the most common expressions. Refer back to the
tree in Figure 14-4 to follow along.

Table 14-2. XPath examples

Expression Result Description
‘//common’ Two nodes Look down the tree for any common nodes.

‘/catalog/plant/common’ Two nodes Travel the specific path from the root node catalog to all plant nodes to all
common nodes within the plant nodes.

‘//common/text()’ Bloodroot,
Columbine

Locate the text content of all common nodes.

‘//plant[2]/price/text()’ $9.37 Locate plant nodes anywhere in the tree, then filter to take only the second.
From this plant node, travel to its price child and locate its text.

‘//@date’ 0399, 0199 Locate the attribute value of any attribute named “date” in the tree.

‘//price[@curr=“CAD”]/
text()’

$9.37 The text content of any price node that has a currency attribute value of
“CAD.”

You can try out the XPath expressions in the table with the catalog file. We load the
file into Python using the etree module. The parse method reads the file into an ele‐
ment tree:

from lxml import etree

catalog = etree.parse('data/catalog.xml')

The lxml library gives us access to XPath. Let’s try it out.

XML, HTML, and XPath | 359

This simple XPath expression locates all text content of any <light> node in the tree:

catalog.xpath('//light/text()')

['Mostly Shady', 'Mostly Shady']

Notice that two elements are returned. Although the text content is identical, we have
two <light> nodes in our tree and so are given the text content of each. The follow‐
ing expression is a bit more challenging:

catalog.xpath('//price[@curr="CAD"]/../common/text()')

['Columbine']

The expression locates all <price> nodes in the tree, then filters them according to
whether their curr attribute is CAD. Then, for the remaining nodes (there’s only one in
this case), travel up one step in the tree to the parent node and then back down to any
child “common” nodes and on to their text content. Quite the trip!

Next, we provide an example that uses an HTTP request to retrieve XML-formatted
data, and XPath to wrangle the content into a dataframe.

Example: Accessing Exchange Rates from the ECB
The European Central Bank (ECB) makes exchange rates available online in XML
format. Let’s begin by getting the most recent exchange rates from the ECB with an
HTTP request:

url_base = 'https://www.ecb.europa.eu/stats/eurofxref/'
url2 = 'eurofxref-hist-90d.xml?d574942462c9e687c3235ce020466aae'
resECB = requests.get(url_base+url2)

resECB.status_code

200

Again, we can use the lxml library to parse the text document we received from the
ECB, but this time the contents are in a string returned from the ECB, not in a file:

ecb_tree = etree.fromstring(resECB.content)

In order to extract the data we want, we need to know how it is organized. Here is a
snippet of the content:

<gesmes:Envelope xmlns:gesmes="http://www.gesmes.org/xml/2002-08-01"
 xmlns="http://www.ecb.int/vocabulary/2002-08-01/eurofxref">
<gesmes:subject>Reference rates</gesmes:subject>
<gesmes:Sender>
<gesmes:name>European Central Bank</gesmes:name>
</gesmes:Sender>
<Cube>
<Cube time="2023-02-24">
<Cube currency="USD" rate="1.057"/>
<Cube currency="JPY" rate="143.55"/>

360 | Chapter 14: Data Exchange

<Cube currency="BGN" rate="1.9558"/>
</Cube>
<Cube time="2023-02-23">
<Cube currency="USD" rate="1.0616"/>
<Cube currency="JPY" rate="143.32"/>
<Cube currency="BGN" rate="1.9558"/>
</Cube>
</Cube>
</gesmes:Envelope>

This document appears quite different in structure from the plant catalog. The snip‐
pet shows three levels of tags, all with the same name, and none have text content.
All of the relevant information is contained in attribute values. Other new features are
the xmlns in the root <Envelope> node, and the odd tag names, like gesmes:
Envelope. These have to do with namespaces.

XML allows content creators to use their own vocabularies, called namespaces. The
namespace gives the rules for a vocabulary, such as allowable tag names and attribute
names, and restrictions on how nodes can be nested. And XML documents can
merge vocabularies from different applications. To keep it all straight, information
about the namespace(s) is provided in the document.

The root node in the ECB file is <Envelope>. The additional “gesmes:” in the tag
name indicates that the tags belong to the gesmes vocabulary, which is an interna‐
tional standard for the exchange of time-series information. Another namespace is
also in <Envelope>. It is the default namespace for the file because it doesn’t have a
prefix, like “gesmes:”. Whenever a namespace is not provided in a tag name, the
default is assumed.

The upshot of this is that we need to take into account these namespaces when we
search for nodes. Let’s see how this works when we extract the dates. From the snip‐
pet, we see that the dates reside in “time” attributes. These <Cube>s are children of the
top <Cube>. We can give a very specific XPath expression to step from the root to its
<Cube> child node and on to the next level of <Cube> nodes:

namespaceURI = 'http://www.ecb.int/vocabulary/2002-08-01/eurofxref'

date = ecb_tree.xpath('./x:Cube/x:Cube/@time', namespaces = {'x':namespaceURI})
date[:5]

['2023-07-18', '2023-07-17', '2023-07-14', '2023-07-13', '2023-07-12']

The . in the expression is a shortcut to signify “from here,” and since we’re at the top
of the tree, it’s equivalent to “from the root.” We specified the namespace in our
expression as “x:”. Even though the <Cube> nodes are using the default namespace,
we must specify it in our XPath expression. Fortunately, we can simply pass in the
namespace as a parameter with our own label (“x” in this case) to keep our tag names
short.

XML, HTML, and XPath | 361

Like with the HTML table, we can convert the date values into strings and from
strings into timestamps:

date_str = [str(s) for s in date]
timestamps = pd.to_datetime(date_str)
xrates = pd.DataFrame({"date":timestamps})

As for the exchange rates, they also appear in <Cube> nodes, but these have a “rate”
attribute. For example, we can access all exchange rates for the British pound with the
following XPath expression (we’re ignoring the namespace for the moment):

//Cube[@currency = "GBP"]/@rate

This expression says look for all <Cube> nodes anywhere in the document, filter them
according to whether the node has a currency attribute value of “GBP,” and return
their rate attribute values.

Since we want to extract exchange rates for multiple currencies, we generalize this
XPath expression. We also want to convert the exchange rates to a numeric storage
type, and make them relative to the first day’s rate so that the different currencies are
on the same scale, which makes them more amenable for plots:

currs = ['GBP', 'USD', 'CAD']

for ctry in currs:
 expr = './/x:Cube[@currency = "' + ctry + '"]/@rate'
 rates = ecb_tree.xpath(expr, namespaces = {'x':namespaceURI})
 rates_num = [float(rate) for rate in rates]
 first = rates_num[len(rates_num)-1]
 xrates[ctry] = [rate / first for rate in rates_num]

We wrap up this example with line plots of the exchange rates:

362 | Chapter 14: Data Exchange

Combining knowledge of JSON, HTTP, REST, and HTML gives us access to a vast
variety of data available on the web. For example, in this section we wrote code to
scrape data from a Wikipedia page. One key advantage of this approach is that we can
likely rerun this code in a few months to automatically update the data and the plots.
One key drawback is that our approach is tightly coupled to the structure of the web
page—if someone updates the Wikipedia page and the table is no longer the second
table on the page, our code will also need some edits in order to work. That said, hav‐
ing the skills needed to scrape data from the web opens the door to a wide range of
data and enables all kinds of useful analyses.

Summary
The internet abounds with data that are stored and exchanged in many different for‐
mats. In this chapter, our aim was to give you a taste of the variety of formats avail‐
able and a basic understanding of how to acquire data from online sources and
services. We also addressed the important goal of acquiring data in a reproducible
fashion. Rather than copying and pasting from a web page or completing a form by
hand, we demonstrated how to write code to acquire data. This code gives you a
record of your workflow and of the data provenance.

With each format introduced, we described a model for its structure. A basic under‐
standing of a dataset’s organization helps you uncover issues with quality, mistakes in
reading a source file, and how best to wrangle and analyze the data. In the longer run,
as you continue to develop your data science skills, you will be exposed to other
forms of data exchange, and we expect this approach of considering the organiza‐
tional model and getting your hands dirty with some simple cases will serve you well.

We only touched the surface of web services. There are many other useful topics, like
keeping connections to a server alive as you issue multiple requests or retrieve data in
batches, using cookies, and making multiple connections. But understanding the
basics presented here can get you a long way. For example, if you use a library to
retrieve data from an API but run into an error, you can start looking at the HTTP
requests to debug your code. And you will know what’s possible when a new web ser‐
vice comes online.

Web etiquette is a topic that we must mention. If you plan to scrape data from a web‐
site, it’s a good idea to check that you have permission to do so. When we sign up to
be a client for a web app, we typically check a box indicating our agreement to the
terms of service.

If you use a web service or scrape web pages, be careful not to overburden the site
with your requests. If a site offers a version of the data in a format like CSV, JSON, or
XML, it’s better to download and use these than to scrape from a web page. Likewise,
if there is a Python library that provides structured access to a web app, use it rather

Summary | 363

than writing your own code. When you make requests, start small to test your code,
and consider saving the results so that you don’t have to repeat requests unnecessarily.

The aim of this chapter wasn’t to make you an expert in these specific data formats.
Instead, we wanted to give you the confidence needed to learn more about a data for‐
mat, to evaluate the pros and cons of different formats, and to participate in projects
that might use formats that you haven’t seen before.

Now that you have experience working with different data formats, we return to the
topic of modeling that we introduced in Chapter 4, picking it back up in earnest.

364 | Chapter 14: Data Exchange

PART V

Linear Modeling

CHAPTER 15

Linear Models

At this point in the book, we’ve covered the four stages of the data science lifecycle to
different extents. We’ve talked about formulating questions and obtaining and clean‐
ing data, and we’ve used exploratory data analysis to better understand the data. In
this chapter, we extend the constant model introduced in Chapter 4 to the linear
model. Linear models are a popular tool in the last stage of the lifecycle: understand‐
ing the world.

Knowing how to fit linear models opens the door to all kinds of useful data analyses.
We can use these models to make predictions—for example, environmental scientists
developed a linear model to predict air quality based on air sensor measurements and
weather conditions (see Chapter 12). In that case study, understanding how measure‐
ments from two instruments varied enabled us to calibrate inexpensive sensors and
improve their air quality readings. We can also use these models to make inferences
about the form of a relationship between features—for example, in Chapter 18 we’ll
see how veterinarians used a linear model to infer the coefficients for length and girth
for a donkey’s weight: Length + 2 × Girth − 175. In that case study, the model ena‐
bles vets working in the field to prescribe medication for sick donkeys. Models can
also help describe relationships and provide insights—for example, in this chapter we
explore relationships between factors correlated with upward mobility, such as com‐
mute time, income inequality, and the quality of K–12 education. We carry out a
descriptive analysis that follows an analysis social scientists have used to shape public
conversation and inform policy recommendations.

We start by describing the simple linear model, which summarizes the relationship
between two features with a line. We explain how to fit this line to data using the loss
minimization approach introduced in Chapter 4. Then we introduce the multiple lin‐
ear model, which models one feature using multiple other features. To fit such a
model, we use linear algebra and reveal the geometry behind fitting a linear model

367

with squared error loss. Finally, we cover feature engineering techniques that let us
include categorical features and transformed features when building models.

Simple Linear Model
Like with the constant model, our goal is to approximate the signal in a feature by a
constant. Now we have additional information from a second feature to help us. In
short, we want to use information from a second feature to make a better model than
the constant model. For example, we might describe the sale price of a house by its
size or predict a donkey’s weight from its length. In each of these examples, we have
an outcome feature (sale price, weight) that we want to explain, describe, or predict
with the help of an explanatory feature (house size, length).

We use outcome to refer to the feature that we are trying to model
and explanatory for the feature that we are using to explain the out‐
come. Different fields have adopted conventions for describing this
relationship. Some call the outcome the dependent variable and the
explanatory the independent variable. Others use response and
covariate; regress and regressor; explained and explanatory; endog‐
enous and exogenous. In machine learning, target and features or
predicted and predictors are common. Unfortunately, many of these
pairs connote a causal relationship. The notion of explaining or
predicting is not necessarily meant to imply that one causes the
other. Particularly confusing is the independent-dependent usage,
and we recommend avoiding it.

One possible model we might use is a line. Mathematically, that means we have an
intercept, θ0, and a slope, θ1, and we use the explanatory feature x to approximate the
outcome, y, by a point on the line:

y ≈ θ0 + θ1x

As x changes, the estimate for y changes but still falls on the line. Typically, the esti‐
mate isn’t perfect, and there is some error in using the model; that’s why we use the
symbol ≈ to mean “approximately.”

To find a line that does a good job of capturing the signal in the outcome, we use the
same approach introduced in Chapter 4 and minimize the average squared loss.
Specifically, we follow these steps:

1. Find the errors: yi − (θ0 + θ1xi), i = 1, …, n

2. Square the errors (i.e., use squared loss): [yi − (θ0 + θ1xi)]2

368 | Chapter 15: Linear Models

3. Calculate the average loss over the data:

1
n ∑

i
[yi − (θ0 + θ1xi)]2

To fit the model, we find the slope and intercept that give us the smallest average loss;
in other words, we minimize the mean squared error, or MSE for short. We call the
minimizing values for the intercept and slope θ̂ 0 and θ̂ 1.

Notice that the errors we calculate in step 1 are measured in the vertical direction,
meaning for a specific x, the error is the vertical distance between the data point (x, y)
and the point on the line (x, θ0 + θ1x). Figure 15-1 shows this notion. On the left is a
scatterplot of points with a line used to estimate y from x. We have marked two spe‐
cific points by squares and their corresponding approximations on the line by dia‐
monds. The dotted segment from the actual point to the line shows the error. The
plot on the right is a scatterplot of all the errors; for reference, we marked the errors
corresponding to the two square points in the left plot with squares in the right plot
as well.

Figure 15-1. On the left is a scatterplot of (xi, yi) pairs and a line that we use to estimate
y from x. Two specific points are represented by squares and their estimates by dia‐
monds. On the right is a scatterplot of the errors: yi − (θ0 + θ1xi).

Later in this chapter, we derive the values θ̂ 0 and θ̂ 1 that minimize the mean squared
error. We show that these are:

Simple Linear Model | 369

θ̂ 0 = ȳ − θ̂ 1x̄

θ̂ 1 = r(x, y) SD(y)
SD(x)

Here, x represents the values x1, …, xn and y is similarly defined; r(x, y) is the correla‐
tion coefficient of the (xi, yi) pairs.

Putting the two together, the equation for the line becomes:

θ̂ 0 + θ̂ 1x = ȳ − θ̂ 1x̄ + θ̂ 1x

= ȳ + r(x, y)SD(y) (x − x̄)
SD(x)

This equation has a nice interpretation: for a given x value, we find how many stan‐
dard deviations above (or below) average it is, and then we predict (or explain,
depending on the setting) y to be r times as many standard deviations above (or
below) its average.

We see from the expression for the optimal line that the sample correlation coefficient
plays an important role. Recall that r measures the strength of the linear association
and is defined as:

r(x, y) = ∑
i

(xi − x̄)
SD(x)

(yi − ȳ)
SD(y)

Here are a few important features of the correlation that help us fit linear models:

• r is unitless. Notice that x, x̄, and SD(x) all have the same units, so the following
ratio has no units (and likewise for the terms involving yi):

(xi − x̄)
SD(x)

• r is between −1 and +1. Only when all of the points fall exactly along a line is the
correlation either +1 or −1, depending on whether the slope of the line is positive
or negative.

• r measures the strength of a linear association, not whether or not the data have a
linear association. The four scatterplots in Figure 15-2 all have the same correla‐
tion coefficient of about 0.8 (as well as the same averages and standard

370 | Chapter 15: Linear Models

deviations), but only one plot, the one on the top left, has what we think of as a
linear association with random errors about the line.

Figure 15-2. These four sets of points, known as Anscombe’s quartet, have the same cor‐
relation of 0.8, and the same means and standard deviations. The plot in the top left
exhibits a linear association; top right shows a perfect nonlinear association; bottom left,
with the exception of one point, is a perfect linear association; and bottom right, with
the exception of one point, has no association.

Again, we do not expect the pairs of data points to fall exactly along a line, but we do
expect the scatter of points to be reasonably described by the line, and we expect the
deviations between yi and the estimate θ̂ 0 + θ̂ 1xi to be roughly symmetrically dis‐
tributed about the line with no apparent patterns.

Linear models were introduced in Chapter 12, where we used the relationship
between measurements from high-quality air monitors operated by the Environmen‐
tal Protection Agency and neighboring inexpensive air quality monitors to calibrate
the inexpensive monitors for more accurate predictions. We revisit that example to
make the notion of a simple linear model more concrete.

Simple Linear Model | 371

Example: A Simple Linear Model for Air Quality
Recall from Chapter 12 that our aim is to use air quality measurements from the
accurate Air Quality System (AQS) sensors operated by the US government to predict
the measurements made by PurpleAir (PA) sensors. The pairs of data values come
from neighboring instruments that measure the average daily concentration of partic‐
ulate matter in the air on the same day. (The unit of measurement is an average count
of particles under 2.5 mm in size per cubic liter of air in a 24-hour period.) In this
section, we focus on air quality measurements at one location in Georgia. These are a
subset of the data we examined in the case study in Chapter 12. The measurements
are daily averages from August 2019 to mid-November 2019:

 date id region pm25aqs pm25pa
5258 2019-08-02 GA1 Southeast 8.65 16.19
5259 2019-08-03 GA1 Southeast 7.70 13.59
5260 2019-08-04 GA1 Southeast 6.30 10.30
...
5439 2019-10-18 GA1 Southeast 6.30 12.94
5440 2019-10-21 GA1 Southeast 7.50 13.62
5441 2019-10-30 GA1 Southeast 5.20 14.55

184 rows × 5 columns

The feature pm25aqs contains measurements from the AQS sensor and pm25pa from
the PurpleAir monitor. Since we are interested in studying how well the AQS meas‐
urements predict the PurpleAir measurements, our scatterplot places PurpleAir read‐
ings on the y-axis and AQS readings on the x-axis. We also add a trend line:

px.scatter(GA, x="pm25aqs", y="pm25pa", trendline='ols',
 trendline_color_override="darkorange",
 labels={'pm25aqs':'AQS PM2.5', 'pm25pa':'PurpleAir PM2.5'},
 width=350, height=250)

372 | Chapter 15: Linear Models

This scatterplot shows a linear relationship between the measurements from these
two kinds of instruments. The model that we want to fit has the following form:

PA ≈ θ0 + θ1AQ

where PA refers to the PurpleAir average daily measurement and AQ to its partner
AQS measurement.

Since pandas.Series objects have built-in methods to compute standard deviations
(SDs) and correlation coefficients, we can quickly define functions that calculate the
best-fitting line:

def theta_1(x, y):
 r = x.corr(y)
 return r * y.std() / x.std()

def theta_0(x, y):
 return y.mean() - theta_1(x, y) * x.mean()

Now we can fit the model by computing θ̂ 0 and θ̂ 1 for these data:

t1 = theta_1(GA['pm25aqs'], GA['pm25pa'])
t0 = theta_0(GA['pm25aqs'], GA['pm25pa'])

Model: -3.36 + 2.10AQ

This model matches the trend line shown in the scatterplot. That’s not by accident.
The parameter value for trendline in the call to scatter() is "ols", which stands
for ordinary least squares, another name for fitting a linear model by minimizing
squared error.

Example: A Simple Linear Model for Air Quality | 373

Let’s examine the errors. First, we find the predictions for PA measurements given the
AQS measurements, and then we calculate the errors—the difference between the
actual PA measurements and the predictions:

prediction = t0 + t1 * GA["pm25aqs"]
error = GA["pm25pa"] - prediction
fit = pd.DataFrame(dict(prediction=prediction, error=error))

Let’s plot these errors against the predicted values:

fig = px.scatter(fit, y='error', x='prediction',
 labels={"prediction": "Prediction",
 "error": "Error"},
 width=350, height=250)

fig.add_hline(0, line_width=2, line_dash='dash', opacity=1)
fig.update_yaxes(range=[-12, 12])

An error of 0 means that the actual measurement falls on the fitted line; we also call
this line the least squares line or the regression line. A positive value means it is above
the line, and negative means it’s below. You might be wondering how good this model
is and what it says about our data. We consider these topics next.

Interpreting Linear Models
The original scatterplot of paired measurements shows that the PurpleAir recordings
are often quite a bit higher than the more accurate AQS measurements. Indeed, the
equation for our simple line model has a slope of about 2.1. We interpret the slope to
mean that a change of 1 ppm measured by the AQS monitor is associated with a
change of 2 ppm in the PA measurement, on average. So, if on one day the AQS sen‐
sor measures 10 ppm and on the next day it is 5 ppm higher, namely 15 ppm, then
our prediction for the PA measurement increases from one day to the next by
2 × 5 = 10 ppm.

374 | Chapter 15: Linear Models

Any change in the PurpleAir reading is not caused by the change in the AQS reading.
Rather, they both reflect the air quality, and our model captures the relationship
between the two devices. Oftentimes, the term prediction is taken to mean causation,
but that is not the case here. Instead, the prediction just refers to our use of the linear
association between PA and AQS measurements.

As for the intercept in the model, we might expect it to be 0, since when there is no
particulate matter in the air we would think that both instruments would measure 0
ppm. But for an AQS of 0, the model predicts −3.4 ppm for PurpleAir, which doesn’t
make sense. There can’t be negative amounts of particles in the air. This highlights the
problem of using the model outside the range where measurements were taken. We
observed AQS recordings between 3 and 18 ppm, and in this range the model fits
well. While it makes sense for the line to have an intercept of 0, such a model doesn’t
fit well in a practical sense and the predictions tend to be much worse.

George Box, a renowned statistician, famously said, “All models are wrong, but some
are useful.” Here is a case where despite the intercept of the line not passing through
0, the simple linear model is useful in predicting air quality measurements for a Pur‐
pleAir sensor. Indeed, the correlation between our two features is very high:

GA[['pm25aqs', 'pm25pa']].corr()

 pm25aqs pm25pa
pm25aqs 1.00 0.92
pm25pa 0.92 1.00

Aside from looking at correlation coefficients, there are other ways to assess the qual‐
ity of a linear model.

Assessing the Fit
The earlier plot of the errors against the fitted values gives a visual assessment of the
quality of the fit. (This plot is called a residual plot because the errors are sometimes
referred to as residuals.) A good fit should show a cloud of points around the hori‐
zontal line at 0 with no clear pattern. When there is a pattern, we can usually con‐
clude that the simple linear model doesn’t entirely capture the signal. We saw earlier
that there are no apparent patterns in the residual plot.

Another type of residual plot that can be useful is a plot of the residuals against a fea‐
ture that is not in the model. If we see a pattern, then we may want to include this
feature in the model, in addition to the feature(s) already in the model. Also, when
the data have a time component, we want to check for patterns in the residuals over
time. For these particular data, since the measurements are daily averages over a four-
month period, we plot the error against the date the measurement is recorded:

Example: A Simple Linear Model for Air Quality | 375

It looks like there are a few consecutive days near the end of August and again near
the end of September where the data are far below what is expected. Looking back at
the original scatterplot (and the first residual plot), we can see two small clusters of
horizontal points below the main point cloud. The plot we just made indicates that
we should check the original data and any available information about the equipment
to determine whether it was properly functioning on those days.

The residual plot can also give us a general sense of how accurate the model is in its
predictions. Most of the errors lie between ±6 ppm of the line. And we find the stan‐
dard deviation of the errors to be about 2.8 ppm:

error.std()

2.796095864304746

In comparison, the standard deviation of the PurpleAir measurements is quite a bit
larger:

GA['pm25pa'].std()

6.947418231019876

The model error may be further reduced if we find the monitor wasn’t working on
those days in late August and September and so exclude them from the dataset. In
any event, for situations where the air is quite clean, the error is relatively large, but in
absolute terms it is inconsequential. We are typically more concerned about the case
when there is air pollution, and in that case, an error of 2.8 ppm seems reasonable.

Let’s return to the process of how to find this line, the process of model fitting. In the
next section, we derive the intercept and slope by minimizing the mean squared
error.

376 | Chapter 15: Linear Models

Fitting the Simple Linear Model
We stated earlier in this chapter that when we minimize the average loss over the
data:

1
n ∑

i
[yi − (θ0 + θ1xi)]2

the best-fitting line has intercept and slope:

θ̂ 0 = ȳ − θ̂ 1x̄

θ̂ 1 = r(x, y) SD(y)
SD(x)

In this section, we use calculus to derive these results.

With the simple linear model, the mean squared error is a function of two model
parameters, the intercept and slope. This means that if we use calculus to find the
minimizing parameter values, we need to find the partial derivatives of the MSE with
respect to θ0 and θ1. We can also find these minimizing values through other
techniques:

Gradient descent
We can use numerical optimization techniques, such as gradient descent, when
the loss function is more complex and it’s faster to find an approximate solution
that’s pretty accurate (see Chapter 20).

Quadratic formula
Since the average loss is a quadratic function of θ0 and θ1, we can use the quad‐
ratic formula (along with some algebra) to solve for the minimizing parameter
values.

Geometric argument
Later in this chapter, we use a geometric interpretation of least squares to fit mul‐
tiple linear models. This approach relates to the Pythagorean theorem and has
several intuitive benefits.

We choose calculus to optimize the simple linear model since it is quick and straight‐
forward. To begin, we take the partial derivatives of the sum of squared errors with
respect to each parameter (we can ignore the e1/n in the MSE because it doesn’t affect
the location of the minimum):

Fitting the Simple Linear Model | 377

∂
∂θ0

∑
i

[yi − (θ0 + θ1xi)]2 = ∑
i

2(yi − θ0 − θ1xi)(− 1)

∂
∂θ1

∑
i

[yi − (θ0 + θ1xi)]2, = ∑
i

2(yi − θ0 − θ1xi)(− xi)

Then we set the partial derivatives equal to 0 and simplify a bit by multiplying both
sides of the equations by −1/2 to get:

0 = ∑
i

(yi − θ̂ 0 − θ̂ 1xi)

0 = ∑
i

(yi − θ̂ 0 − θ̂ 1xi)xi

These equations are called the normal equations. In the first equation, we see that θ̂ 0

can be represented as a function of θ̂ 1:

θ̂ 0 = ȳ − θ̂ 1x̄

Plugging this value into the second equation gives us:

0 = ∑
i

(yi − ȳ + θ̂ 1x̄ − θ̂ 1xi)xi

= ∑
i

[(yi − ȳ) − θ̂ 1(xi − x̄)]xi

θ̂ 1 =
∑i (yi − ȳ)xi
∑i (xi − x̄)xi

After some algebra, we can represent θ̂ 1 in terms of quantities that we are familiar
with:

θ̂ 1 = r(x, y) SD(y)
SD(x)

As shown earlier in this chapter, this representation says that a point on the fitted line
at x can be written as follows:

θ̂ 0 + θ̂ 1x = ȳ + r(x, y)SD(y) (x − x̄)
SD(x)

378 | Chapter 15: Linear Models

We have derived the equation for the least squares line that we used in the previous
section. There, we used the pandas built-in methods to compute SD(x), SD(y), and
r(x, y), to easily calculate the equation for this line. However, in practice we recom‐
mend using the functionality provided in scikit-learn to do the model fitting:

from sklearn.linear_model import LinearRegression

y = GA['pm25pa']
x = GA[['pm25aqs']]
reg = LinearRegression().fit(x, y)

Our fitted model is:

Model: PA estimate = -3.36 + 2.10AQS

Notice that we provided y as an array and x as a dataframe to LinearRegression. We
will soon see why when we fit multiple explanatory features in a model.

The LinearRegression method offers numerically stable algorithms to fit linear
models by least squares. This is especially important when fitting multiple variables,
which we introduce next.

Multiple Linear Model
So far in this chapter, we’ve used a single input variable to predict an outcome vari‐
able. Now we introduce the multiple linear model that uses more than one feature to
predict (or describe or explain) the outcome. Having multiple explanatory features
can improve our model’s fit to the data and improve predictions.

We start by generalizing from a simple linear model to one that includes a second
explanatory variable, called v. This model is linear in both x and v, meaning that for a
pair of values for x and v, we can describe, explain, or predict y by the linear
combination:

y ≈ θ0 + θ1x + θ2v

Notice that for a particular value of v, say v⋆, we could express the preceding equation
as:

y ≈ (θ0 + θ2v⋆) + θ1x

In other words, when we hold v constant at v⋆, we have a simple linear relation
between x and y with slope θ1 and intercept θ0 + θ2v⋆. For a different value of v, say

Multiple Linear Model | 379

v†, we again have a simple linear relationship between x and y. The slope for x
remains the same and the only change is the intercept, which is now θ0 + θ2v†.

With multiple linear regression, we need to remember to interpret the coefficient θ1
of x in the presence of the other variables in the model. Holding fixed the values of
the other variables in the model (that’s just v in this case), an increase of 1 unit in x
corresponds to a θ1 change in y, on average. One way to visualize this kind of multi‐
ple linear relationship is to create facets of scatterplots of (x, y) where in each plot the
values of v are roughly the same. We make such a scatterplot for the air quality meas‐
urements next, and provide examples of additional visualizations and statistics to
examine when fitting a multiple linear model.

The scientists who studied the air quality monitors (see Chapter 12) were looking for
an improved model that incorporated weather factors. One weather variable they
examined was a daily measurement for relative humidity. Let’s consider a two-
variable linear model to explain the PurpleAir measurements based on the AQS sen‐
sor measurements and relative humidity. This model has the following form:

PA ≈ θ0 + θ1AQ + θ2RH

where PA, AQ, and RH refer to the variables: the PurpleAir average daily measure‐
ment, AQS measurement, and relative humidity, respectively.

For a first step, we make a facet plot to compare the relationship between the two air
quality measurements for fixed values of humidity. To do this, we transform relative
humidity to a categorical variable so that each facet consists of observations with sim‐
ilar humidity:

rh_cat = pd.cut(GA['rh'], bins=[43,50,55,60,78],
 labels=['<50','50-55','55-60','>60'])

Then we use this qualitative feature to subdivide the data into a two-by-two panel of
scatterplots:

fig = px.scatter(GA, x='pm25aqs', y='pm25pa',
 facet_col=rh_cat, facet_col_wrap=2,
 facet_row_spacing=0.15,
 labels={'pm25aqs':'AQS PM2.5', 'pm25pa':'PurpleAir PM2.5'},
 width=550, height=350)

fig.update_layout(margin=dict(t=30))
fig.show()

380 | Chapter 15: Linear Models

These four plots show a linear relationship between the two sources of air quality
measurements. And the slopes appear to be similar, which means that a multiple lin‐
ear model may fit well. It’s difficult to see from these plots if the relative humidity
affects the intercept much.

We also want to examine the pairwise scatterplots between the three features. When
two explanatory features are highly correlated, their coefficients in the model may be
unstable. While linear relationships between three or more features may not show up
in pairwise plots, it’s still a good idea to check:

fig = px.scatter_matrix(
 GA[['pm25pa', 'pm25aqs', 'rh']],
 labels={'pm25aqs':'AQS', 'pm25pa':'PurpleAir', 'rh':'Humidity'},
 width=550, height=400)

fig.update_traces(diagonal_visible=False)

Multiple Linear Model | 381

The relationship between humidity and air quality does not appear to be particularly
strong. Another pairwise measure we should examine is the correlations between
features:

 pm25pa pm25aqs rh
pm25pa 1.00 0.95 -0.06
pm25aqs 0.95 1.00 -0.24
rh -0.06 -0.24 1.00

One small surprise is that relative humidity has a small negative correlation with the
AQS measurement of air quality. This suggests that humidity might be helpful in the
model.

In the next section, we derive the equation for the fit. But for now, we use the func‐
tionality in LinearRegression to fit the model. The only change from earlier is that
we provide two columns for the explanatory variables (that’s why the x input is a
dataframe):

from sklearn.linear_model import LinearRegression

y = GA['pm25pa']
X2 = GA[['pm25aqs', 'rh']]

382 | Chapter 15: Linear Models

model2 = LinearRegression().fit(X2, y)

The fitted multiple linear model, including the coefficient units, is:

PA estimate = -15.8 ppm + 2.25 ppm/ppm x AQS + 0.21 ppm/percent x RH

The coefficient for humidity in the model adjusts the air quality prediction by 0.21
ppm for each percentage point of relative humidity. Notice that the coefficient for
AQS differs from the simple linear model that we fitted earlier. This happens because
the coefficient reflects the additional information coming from relative humidity.

Lastly, to check the quality of the fit, we make residual plots of the predicted values
and the errors. This time, we use LinearRegression to compute the predictions
for us:

predicted_2var = model2.predict(X2)
error_2var = y - predicted_2var

fig = px.scatter(y = error_2var, x=predicted_2var,
 labels={"y": "Error", "x": "Predicted PurpleAir measurement"},
 width=350, height=250)

fig.update_yaxes(range=[-12, 12])
fig.add_hline(0, line_width=3, line_dash='dash', opacity=1)

fig.show()

The residual plot appears to have no clear patterns, which indicates that the model
fits pretty well. Notice also that the errors nearly all fall within –4 and +4 ppm, a
smaller range than in the simple linear model. And we find the standard deviation of
the residuals is quite a bit smaller:

error_2var.std()

1.8211427707294048

Multiple Linear Model | 383

The residual standard deviation has been reduced from 2.8 ppm in the one variable
model to 1.8 ppm, a good size reduction.

The correlation coefficient can’t capture the strength of a linear association model
when we have more than one explanatory variable. Instead, we adapt the MSE to give
us a sense of model fit. In the next section, we describe how to fit a multiple linear
model and use the MSE to assess fit.

Fitting the Multiple Linear Model
In the previous section, we considered the case of two explanatory variables; one of
these we called x and the other v. Now we want to generalize the approach to p
explanatory variables. The idea of choosing different letters to represent variables
quickly fails us. Instead, we use a more formal and general approach that represents
multiple predictors as a matrix, as depicted in Figure 15-3. We call X the design
matrix. Notice that X has shape n × (p + 1). Each column of X represents a feature,
and each row represents an observation. That is, xi, j is the measurement taken on
observation i for feature j.

Figure 15-3. In this design matrix X, each row represents an observation/record and
each column a feature/variable

One technicality: the design matrix is defined as a mathematical
matrix, not a dataframe, so you might notice that a matrix doesn’t
include the column or row labels that a dataframe has.
That said, we usually don’t have to worry about converting data‐
frames into matrices since most Python libraries for modeling treat
dataframes of numbers as if they were matrices.

For a given observation, say, the second row in X, we approximate the outcome y2 by
the linear combination:

y2 ≈ θ0 + θ1x2, 1 + … + θpx2, p

It’s more convenient to express the linear approximation in matrix notation. To do
this, we write the model parameters as a p + 1 column vector θ:

384 | Chapter 15: Linear Models

θ =

θ0
θ1

⋮

θp

Putting these notational definitions together, we can write the vector of predictions
for the entire dataset using matrix multiplication:

Xθ

If we check the dimensions of X and θ, we can confirm that Xθ is an n-dimensional
column vector. So the error in using this linear prediction can be expressed as the
vector:

e = y − Xθ

where the outcome variable is also represented as a column vector:

y =

y1
y2

⋮

yn

This matrix representation of the multiple linear model can help us find the model
that minimizes mean squared error. Our goal is to find the model parameters
(θ0, θ1, …, θp) that minimize the mean squared error:

1
n ∑

i
[yi − (θ0 + θ1xi, 1 +⋯ + θpxi, p)]2 = 1

n‖y − Xθ‖2

Here, we use the notation ‖v‖2 for a vector v as a shorthand for the sum of each vector
element squared: ‖v‖2 = ∑i vi

2. The square root, ‖v‖2, corresponds to the length of the
vector v and is also called the ℓ2 norm of v. So, minimizing the mean squared error is
the same thing as finding the shortest error vector.

We can fit our model using calculus as we did for the simple linear model. However,
this approach gets cumbersome, and instead we use a geometric argument that is
more intuitive and easily leads to useful properties of the design matrix, errors, and
predicted values.

Fitting the Multiple Linear Model | 385

Our goal is to find the parameter vector, which we call θ̂ , that minimizes our average
squared loss—we want to make ‖y − Xθ‖2 as small as possible for a given X and y.
The key insight is that we can restate this goal in a geometric way. Since the model
predictions and the true outcomes are both vectors, we can think of them as vectors
in a vector space. When we change our model parameters θ, the model makes differ‐
ent predictions, but any prediction must be a linear combination of the column vec‐
tors of X; that is, the prediction must be in what is called span(X). This notion is
illustrated in Figure 15-4, where the shaded region consists of the possible linear
models. Notice that y is not entirely captured in span(X); this is typically the case.

Figure 15-4. In this simplified diagram, the space of all possible model prediction vectors
span(X) is illustrated as a plane in three-dimensional space, and the observed y as a
vector

Although the squared loss can’t be exactly zero because y isn’t in the span(X), we can
find the vector that lies as close to y as possible while still being in span(X). This vec‐
tor is called ŷ.

The error is the vector e = y − ŷ. Its length ‖e‖ represents the distance between the
true outcome and our model’s prediction. Visually, e has the smallest magnitude
when it is perpendicular to the span(X), as shown in Figure 15-5. The proof of this
fact is omitted, and we rely on the figures to convince you of it.

Figure 15-5. The mean squared error is minimized when the prediction ŷ lies in span(X)
perpendicular to y

The fact that the smallest error, e, must be perpendicular to ŷ lets us derive a formula
for θ̂ as follows:

386 | Chapter 15: Linear Models

Xθ̂ + e = y (the definition of y, ŷ, e)

X⊤Xθ̂ + X⊤e = X⊤y (left‐multiply by X⊤)

X⊤Xθ̂ = X⊤y (e ⊥ span(X))

θ̂ = (X⊤X)−1X⊤y (left‐multiply by (X⊤X)−1)

This general approach to derive θ̂ for the multiple linear model also gives us θ̂ 0 and

θ̂ 1 for the simple linear model. If we set X to be the two-column matrix that contains

the intercept column and one feature column, this formula for θ̂ and some linear
algebra gets the intercept and slope of the least-squares-fitted simple linear model. In
fact, if X is simply a single column of 1s, then we can use this formula to show that θ̂
is just the mean of y. This nicely ties back to the constant model that we introduced
in Chapter 4.

While we can write a simple function to derive the θ̂ based on the
formula

θ̂ = (X⊤X)−1X⊤y

we recommend leaving the calculation of θ̂ to the optimally tuned
methods provided in the scikit-learn and statsmodels libraries.
They handle cases where the design matrix is sparse, highly co-
linear, and not invertible.

This solution for θ̂ (along with the pictures) reveals some useful properties of the fit‐
ted coefficients and the predictions:

• The residuals, e, are orthogonal to the predicted values, ŷ.
• The average of the residuals is 0 if the model has an intercept term.
• The variance of the residuals is just the MSE.

These properties explain why we examine plots of the residuals against the predic‐
tions. When we fit a multiple linear model, we also plot the residuals against variables
that we are considering adding to the model. If they showed a linear pattern, then we
would consider adding them to the model.

Fitting the Multiple Linear Model | 387

In addition to examining the SD of the errors, the ratio of the MSE for a multiple lin‐
ear model to the MSE for the constant model gives a measure of the model fit. This is
called the multiple R2 and is defined as:

R2 = 1 − ‖y − Xθ̂ ‖2

‖y − ȳ‖2

As the model fits the data closer and closer, the multiple R2 gets nearer to 1. That
might seem like a good thing, but there can be problems with this approach because
R2 continues to grow even as we add meaningless features to our model, as long as
the features expand the span(X). To account for the size of a model, we often adjust
the numerator and denominator in R2 by the number of fitted coefficients in the
models. That is, we normalize the numerator by 1/[n − (p + 1)] and the denominator
by 1/(n − 1). Better approaches to selecting a model are covered in Chapter 16.

Next, we consider a social science example where there are many variables available
to us for modeling.

Example: Where Is the Land of Opportunity?
The US is called “the land of opportunity” because people believe that even those with
few resources can end up wealthy in the US—economists call this notion “economic
mobility.” In one study, economist Raj Chetty and colleagues did a large-scale data
analysis on economic mobility in the US. His basic question was whether the US is a
land of opportunity. To answer this somewhat vague question, Chetty needed a way
to measure economic mobility.

Chetty had access to 2011–2012 federal income tax records for everyone born in the
US between 1980 and 1982, along with their parents’ tax records filed in their birth
year. They matched the 30-year-olds to their parents by finding the parents’ 1980–
1982 tax records that listed them as dependents. In total, his dataset had about 10
million people. To measure economic mobility, Chetty grouped people born in a par‐
ticular geographic region whose parents’ income was in the 25th income percentile in
1980–1982. He then found the group’s average income percentile in 2011. Chetty calls
this average absolute upward mobility (AUM). If a region’s AUM is 25, then people
born into the 25th percentile generally stay in the 25th percentile—they remain where
their parents were when they were born. High AUM values mean that the region has
more upward mobility. Those born into the 25th income percentile in these regions
generally wind up in a higher income bracket than their parents. For reference, the
US average AUM is about 41 at the time of this writing. Chetty calculated the AUM
for regions called commuting zones (CZs), which are roughly on the same scale as
counties.

388 | Chapter 15: Linear Models

https://doi.org/10.1093/qje/qju022
https://doi.org/10.1093/qje/qju022

While the granularity of the original data is at an individual level, the data Chetty
analyzed has a granularity at the CZ level. Income records can’t be publicly available
because of privacy laws, but the AUM for a commuting zone can be made available.
However, even with the granularity of a commuting zone, not all commuting zones
are included in the data set because with 40 features in the data, it might be possible
to identify individuals in small CZs. This limitation points to a potential coverage
bias. Measurement bias is another potential problem. For example, children born into
the 25th income percentile who become extremely wealthy may not file income tax.

We also point out the limitations of working with data that are regional averages
rather than individual measurements. The relationships found among features are
often more highly correlated at the aggregate level than at the individual level. This
phenomenon is called ecological regression, and interpretations of findings from
aggregated data need to be made with care.

Chetty had a hunch that some places in the US have higher economic mobility than
others. His analysis found this to be true. He found that some cities—such as San
Jose, Calif.; Washington, DC; and Seattle—have higher mobility than others, such as
Charlotte, N.C.; Milwaukee; and Atlanta. This means that, for example, people move
from low to high income brackets in San Jose at a higher rate compared to Charlotte.
Chetty used linear models to find that social and economic factors like segregation,
income inequality, and local school systems are related to economic mobility.

In this analysis, our outcome variable is the AUM for a commuting zone, since we are
interested in finding features that correlate with AUM. There are many possible such
features in Chetty’s data, but we first investigate one in particular: the fraction of peo‐
ple in a CZ who have a 15-minute or shorter commute to work.

Explaining Upward Mobility Using Commute Time
We begin our investigation by loading the data into a dataframe called cz_df:

 aum travel_lt15 gini rel_tot ... taxrate worked_14 foreign region
0 38.39 0.33 0.47 0.51 ... 0.02 3.75e-03 1.18e-02 South
1 37.78 0.28 0.43 0.54 ... 0.02 4.78e-03 2.31e-02 South
2 39.05 0.36 0.44 0.67 ... 0.01 2.89e-03 7.08e-03 South
...
702 44.12 0.42 0.42 0.29 ... 0.02 4.82e-03 9.85e-02 West
703 41.41 0.49 0.41 0.26 ... 0.01 4.39e-03 4.33e-02 West
704 43.20 0.24 0.42 0.32 ... 0.02 3.67e-03 1.13e-01 West

705 rows × 9 columns

Each row represents one commuting zone. The column aum has the average AUM for
people born in the commuting zone in 1980–1982 to parents in the 25th income

Example: Where Is the Land of Opportunity? | 389

percentile. There are many columns in this dataframe, but for now we focus on the
fraction of people in a CZ that have a 15-minute or shorter commute time, which is
called travel_lt15. We plot AUM against this fraction to look at the relationship
between the two variables:

px.scatter(cz_df, x='travel_lt15', y='aum', width=350, height=250,
 labels={'travel_lt15':'Commute time under 15 min',
 'aum':'Upward mobility'})

The scatterplot shows a rough linear association between AUM and commute time.
Indeed, we find the correlation to be quite strong:

cz_df[['aum', 'travel_lt15']].corr()

 aum travel_lt15
aum 1.00 0.68
travel_lt15 0.68 1.00

Let’s fit a simple linear model to explain AUM with commute time:

from sklearn.linear_model import LinearRegression

y = cz_df['aum']
X = cz_df[['travel_lt15']]

model_ct = LinearRegression().fit(X, y)

The coefficients from the MSE minimization are:

Intercept: 31.3
 Slope: 28.7

Interestingly, an increase in upward mobility of a CZ is associated with an increase in
the fraction of people with a short commute time.

390 | Chapter 15: Linear Models

We can compare the SD of the AUM measurements to the SD of the residuals. This
comparison gives us a sense of how useful the model is in explaining the AUM:

prediction = model_ct.predict(X)
error = y - prediction

print(f"SD(errors): {np.std(error):.2f}")
print(f" SD(AUM): {np.std(cz_df['aum']):.2f}")

SD(errors): 4.14
 SD(AUM): 5.61

The size of the errors about the regression line has decreased from the constant
model by about 25%.

Next, we examine the residuals for lack of fit since it can be easier to see potential
problems with the fit in a residual plot:

fig = px.scatter(x=prediction, y=error,
 labels=dict(x='Prediction for AUM', y='Error'),
 width=350, height=250)

fig.add_hline(0, line_width=2, line_dash='dash', opacity=1)
fig.update_yaxes(range=[-20, 15])

fig.show()

It appears that the errors grow with AUM. We might try a transformation of the
response variable, or fitting a model that is quadratic in the commute time fraction.
We consider transformations and polynomials in the next section. First we see
whether including additional variables offers a more accurate prediction of AUM.

Example: Where Is the Land of Opportunity? | 391

Relating Upward Mobility Using Multiple Variables
In his original analysis, Chetty created several high-level features related to factors
such as segregation, income, and K–12 education. We consider seven of Chetty’s pre‐
dictors as we aim to build a more informative model for explaining AUM. These are
described in Table 15-1.

Table 15-1. Potential explanation for modeling AUM

Column name Description
travel_lt15 Fraction of people with a ≤15-minute commute to work.

gini Gini coefficient, a measure of wealth inequality. Values are between 0 and 1, where small values mean
wealth is evenly distributed and large values mean more inequality.

rel_tot Fraction of people who self-reported as religious.

single_mom Fraction of children with a single mother.

taxrate Local tax rate.

worked_14 Fraction of 14- to 16-year-olds who work.

foreign Fraction of people born outside the US.

Let’s first examine the correlations between AUM and the explanatory features and
between the explanatory features themselves:

 aum travel_lt15 gini rel_tot single_mom taxrate worked_14 foreign
aum 1.00 0.68 -0.60 0.52 -0.77 0.35 0.65 -0.03
travel_lt15 0.68 1.00 -0.56 0.40 -0.42 0.34 0.60 -0.19
gini -0.60 -0.56 1.00 -0.29 0.57 -0.15 -0.58 0.31
rel_tot 0.52 0.40 -0.29 1.00 -0.31 0.08 0.28 -0.11
single_mom -0.77 -0.42 0.57 -0.31 1.00 -0.26 -0.60 -0.04
taxrate 0.35 0.34 -0.15 0.08 -0.26 1.00 0.35 0.26
worked_14 0.65 0.60 -0.58 0.28 -0.60 0.35 1.00 -0.15
foreign -0.03 -0.19 0.31 -0.11 -0.04 0.26 -0.15 1.00

We see that the fraction of single mothers in the commuting zone has the strongest
correlation with AUM, which implies that it is also the single best feature to explain
AUM. In addition, we see that several explanatory variables are highly correlated with
each other; the Gini coefficient is highly correlated with the fraction of teenagers who
work, the fraction of single mothers, and the fraction with less than a 15-minute
commute. With such highly correlated features, we need to take care in interpreting
the coefficients because several different models might equally explain AUM with the
covariates standing in for one another.

392 | Chapter 15: Linear Models

The vector geometry perspective that we introduced earlier in this
chapter can help us understand the problem. Recall that a feature
corresponds to a column vector in n-dimensions, like x. With two
highly correlated features, x1 and x2, these vectors are nearly in
alignment. So the projection of the response vector y onto one of
these vectors is nearly the same as the projection onto the other.
The situation gets even murkier when several features are correla‐
ted with one another.

To begin, we can consider all possible two-feature models to see which one has the
smallest prediction error. Chetty derived 40 potential variables to use as predictors,
which would have us checking (40 × 39)/2 = 780 models. Fitting models, with all
pairs, triples, and so on, of variables quickly grows out of control. And it can lead to
finding spurious correlations (see Chapter 17).

Here, we keep things a bit simpler and examine just one two-variable model that
includes the travel time and single-mother features. After that, we look at the model
that has all seven numeric explanatory features in our dataframe:

X2 = cz_df[['travel_lt15', 'single_mom']]
y = cz_df['aum']

model_ct_sm = LinearRegression().fit(X2, y)

Intercept: 49.0
Fraction with under 15 minute commute coefficient: 18.10
Fraction of single moms coefficient: 18.10

Notice that the coefficient for travel time is quite different than the coefficient for this
variable in the simple linear model. That’s because the two features in our model are
highly correlated.

Next we compare the errors from the two fits:

prediction_ct_sm = model_ct_sm.predict(X2)
error_ct_sm = y - prediction_ct_sm

 SD(errors in model 1): 4.14
 SD(errors in model 2): 2.85

The SD of the residuals have been reduced by another 30%. Adding a second variable
to the model seems worth the extra complexity.

Let’s again visually examine the residuals. We use the same scale on the y-axis to
make it easier to compare this residual plot with the plot for the one-variable model:

fig = px.scatter(x=prediction_ct_sm, y=error_ct_sm,
 labels=dict(x='Two-variable prediction for AUM', y='Error'),
 width=350, height=250)

fig.add_hline(0, line_width=2, line_dash='dash', opacity=1)

Example: Where Is the Land of Opportunity? | 393

fig.update_yaxes(range=[-20, 15])

fig.show()

The larger variability in the errors for higher AUM is even more evident. The impli‐
cations are that the estimates, ŷ , are unaffected, but their accuracy depends on AUM.
This problem can be addressed with weighted regression.

Once again, we point out that data scientists from different back‐
grounds use different terminology to refer to the same concept. For
example, the terminology that calls each row in the design matrix
X an observation and each column a variable is more common
among people with backgrounds in statistics. Others say that each
column of the design matrix represents a feature or that each row
represents a record. Also, we say that our overall process of fitting
and interpreting models is called modeling, while others call it
machine learning.

Now let’s fit a multiple linear model that uses all seven variables to explain upward
mobility. After fitting the model, we again plot the errors using the same y-axis scale
as in the previous two residual plots:

X7 = cz_df[predictors]
model_7var = LinearRegression().fit(X7, y)

prediction_7var = model_7var.predict(X7)
error_7var = y - prediction_7var

fig = px.scatter(
 x=prediction_7var, y=error_7var,
 labels=dict(x='Seven-variable prediction for AUM', y='Error'),
 width=350, height=250)

394 | Chapter 15: Linear Models

fig.add_hline(0, line_width=2, line_dash='dash', opacity=1)
fig.update_yaxes(range=[-20, 15])

fig.show()

The model with seven features does not appear to be much better than the two-
variable model. In fact, the standard deviation of the residuals has only decreased
by 8%:

error_7var.std()

2.588739233574256

We can compare the multiple R2 for these three models:

R² for 7-variable model: 0.79
R² for 2-variable model: 0.74
R² for 1-variable model: 0.46

The adjustment for the number of features in the model makes little difference for us
since we have over 700 observations. Now we have confirmed our earlier findings
that using two variables greatly improves the explanatory capability of the model, and
the seven-variable model offers little improvement over the two-variable model. The
small gain is likely not worth the added complexity of the model.

So far, our models have used only numeric predictor variables. But categorical data is
often useful for model fitting as well. Additionally, in Chapter 10 we transformed
variables and created new variables from combinations of variables. We address how
to incorporate these variables into linear models next.

Example: Where Is the Land of Opportunity? | 395

Feature Engineering for Numeric Measurements
All of the models that we have fit so far in this chapter have used numeric features
that were originally provided in the dataframe. In this section, we look at variables
that are created from transformations of numeric features. Transforming variables to
use in modeling is called feature engineering.

We introduced feature engineering in Chapters 9 and 10. There, we transformed fea‐
tures so that they had symmetric distributions. Transformations can capture more
kinds of patterns in the data and lead to better and more accurate models.

Let’s return to the dataset we used as an example in Chapter 10: house sale prices in
the San Francisco Bay Area. We restrict the data to houses sold in 2006, when sale
prices were relatively stable, so we don’t need to account for trends in price.

We wish to model sale price. Recall that visualizations in Chapter 10 showed us that
sale price was related to several features, like the size of the house, size of the lot,
number of bedrooms, and location. We log-transformed both sale price and the size
of the house to improve their relationship, and we saw that box plots of sale price by
the number of bedrooms and box plots by city revealed interesting relationships too.
In this section, we include transformed numeric features in a linear model. In the
next section, we also add an ordinal feature (the number of bedrooms) and a nominal
feature (the city) to the model.

To begin, we’ll model sale price on house size. The correlation matrix tell us which of
our numeric explanatory variables (original and transformed) is most strongly corre‐
lated with sale price:

 price br lsqft bsqft log_price log_bsqft log_lsqft ppsf log_ppsf
price 1.00 0.45 0.59 0.79 0.94 0.74 0.62 0.49 0.47
br 0.45 1.00 0.29 0.67 0.47 0.71 0.38 -0.18 -0.21
lsqft 0.59 0.29 1.00 0.46 0.55 0.44 0.85 0.29 0.27
bsqft 0.79 0.67 0.46 1.00 0.76 0.96 0.52 -0.08 -0.10
log_price 0.94 0.47 0.55 0.76 1.00 0.78 0.62 0.51 0.52
log_bsqft 0.74 0.71 0.44 0.96 0.78 1.00 0.52 -0.11 -0.14
log_lsqft 0.62 0.38 0.85 0.52 0.62 0.52 1.00 0.29 0.27
ppsf 0.49 -0.18 0.29 -0.08 0.51 -0.11 0.29 1.00 0.96
log_ppsf 0.47 -0.21 0.27 -0.10 0.52 -0.14 0.27 0.96 1.00

Sale price correlates most highly with house size, called bsqft for building square
feet. We make a scatterplot of sale price against house size to confirm the association
is linear:

396 | Chapter 15: Linear Models

The relationship does look roughly linear, but the very large and expensive houses are
far from the center of the distribution and can overly influence the model. As shown
in Chapter 10, the log transformation makes the distributions of price and size more
symmetric (both are log base 10 to make it easier to convert the values into the origi‐
nal units):

Ideally, a model that uses transformations should make sense in the context of the
data. If we fit a simple linear model based on log(size), then when we examine the
coefficient, we think in terms of a percentage increase. For example, a doubling of x
increases the prediction by θlog(2), since θlog(2x) = θlog(2) + θlog(x).

Let’s begin by fitting a model that explains log-transformed price by the house’s log-
transformed size. But first, we note that this model is still considered a linear model.
If we represent sale price by y and house size by x, then the model is:

log(y) = θ0 + θ1log(x)

Feature Engineering for Numeric Measurements | 397

(Note that we have ignored the approximation in this equation to make the linear
relationship clearer.) This equation may not seem linear, but if we rename log(y) to w
and log(x) to v, then we can express this “log–log” relationship as a linear model in w
and v:

w = θ0 + θ1v

Other examples of models that can be expressed as linear combinations of trans‐
formed features are:

log(y) = θ0 + θ1x

y = θ0 + θ1x + θ2x2

y = θ0 + θ1x + θ2z + θ3xz

Again, if we rename log(y) to w, x2 to u, and xz as t, then we can express each of these
models as linear in these renamed features. In order, the preceding models are now:

w = θ0 + θ1x
y = θ0 + θ1x + θ2u
y = θ0 + θ1x + θ2z + θ3t

In short, we can think of models that include nonlinear transformations of features
and/or combinations of features as linear in their derived features. In practice, we
don’t rename the transformed features when we describe the model; instead, we write
the model using the transformations of the original features because it’s important to
keep track of them, especially when interpreting the coefficients and checking resid‐
ual plots.

When we refer to these models, we include mention of the transformations. That is,
we call a model log–log when both the outcome and explanatory variables are log-
transformed; we say it’s log–linear when the outcome is log-transformed but not the
explanatory variable; we describe a model as having polynomial features of, say, degree
two when the first and second power transformations of the explanatory variable are
included; and we say a model includes an interaction term between two explanatory
features when the product of these two features is included in the model.

Let’s fit a log–log model of price on size:

X1_log = sfh[['log_bsqft']]
y_log = sfh['log_price']

model1_log_log = LinearRegression().fit(X1_log, y_log)

398 | Chapter 15: Linear Models

The coefficients and predicted values from this model cannot be directly compared to
a model fitted using linear features because the units are the log of dollars and log of
square feet, not dollars and square feet.

Next, we examine the residuals and predicted values with a plot:

prediction = model1_log_log.predict(X1_log)
error = y_log - prediction

fig = px.scatter(x=prediction, y=error,
 labels=dict(x='Predicted sale price (log USD)', y='Error'),
 width=350, height=250)

fig.add_hline(0, line_width=2, line_dash='dash', opacity=1)
fig.show()

The residual plot looks reasonable, but it contains thousands of points, which makes
it hard to see curvature.

To see if additional variables might be helpful, we can plot the residuals from the fit‐
ted model against a variable that is not in the model. If we see patterns, that indicates
we might want to include this additional feature or a transformation of it. Earlier, we
found that the distribution of price was related to the city where the house is located,
so let’s examine the relationship between the residuals and city:

Feature Engineering for Numeric Measurements | 399

This plot shows us that the distribution of errors appears shifted by city. Ideally, the
median of each city’s box plot lines up with 0 on the y-axis. Instead, more than 75%
of the houses sold in Piedmont have positive errors, meaning the actual sale price is
above the predicted value. And at the other extreme, more than 75% of sale prices in
Richmond fall below their predicted values. These patterns suggest that we should
include city in the model. From a context point of view, it makes sense for location to
impact sale price. In the next section, we show how to incorporate a nominal variable
into a linear model.

Feature Engineering for Categorical Measurements
The first model we ever fit was the constant model in Chapter 4. There, we mini‐
mized squared loss to find the best-fitting constant:

min
c ∑

i
(yi − c)2

We can think of including a nominal feature in a model in a similar fashion. That is,
we find the best-fitting constant to each subgroup of the data corresponding to a
category:

min
cB

∑
i ∈ Berkeley

(yi − cB)2 min
cL

∑
i ∈ Lamorinda

(yi − cL)2

min
cP

∑
i ∈ Piedmont

(yi − cP)2 min
cR

∑
i ∈ Richmond

(yi − cR)2

Another way to describe this model is with one-hot encoding.

One-hot encoding takes a categorical feature and creates multiple numeric features
that have only the values 0 or 1. To one-hot encode a feature, we create new features,

400 | Chapter 15: Linear Models

one for each unique category. In this case, since we have four cities—Berkeley,
Lamorinda, Piedmont, and Richmond—we create four new features in a design
matrix, called Xcity. Each row in Xcity contains one value of 1, and it appears in the
column that corresponds to the city. All other columns contain 0 for that row.
Figure 15-6 illustrates this notion.

Figure 15-6. One-hot encoding for a categorical feature with six rows (left) and its result‐
ing design matrix (right)

Now we can concisely represent the model as follows:

θBxi, B + θLxi, L + θPxi, P + θRxi, R

Here, we have indexed the columns of the design matrix by B, L, P, and R, rather than
j, to make it clear that each column represents a column of 0s and 1s where, say, a 1
appears for xi, P if the ith house is located in Piedmont.

One-hot encoding creates features that have only 0-1 values. These
features are also known as dummy variable or indicator variable.
The term “dummy variable” is more common in econometrics, and
the usage of “indicator variable” is more common in statistics.

Our goal is to minimize least square loss over θ:

‖y − Xθ‖2 = ∑
i

(yi − θBxi, B + θLxi, L + θPxi, P + θRxi, R)2

= ∑
i ∈ Berkeley

(yi − θBxi, B)2 + ∑
i ∈ Lamorinda

(yi − θLxi, L)2

 + ∑
i ∈ Piedmont

(yi − θPxi, P)2 + ∑
i ∈ Richmond

(yi − θRxi, R)2

Feature Engineering for Categorical Measurements | 401

where θ is the column vector [θB, θL, θP, θR]. Notice that this minimization reduces to
four minimizations, one for each city. That’s the idea that we started with at the
beginning of this section.

We can use OneHotEncoder to create this design matrix:

from sklearn.preprocessing import OneHotEncoder

enc = OneHotEncoder(
 # categories argument sets column order
 categories=[["Berkeley", "Lamorinda", "Piedmont", "Richmond"]],
 sparse=False,
)

X_city = enc.fit_transform(sfh[['city']])

categories_city=["Berkeley","Lamorinda", "Piedmont", "Richmond"]
X_city_df = pd.DataFrame(X_city, columns=categories_city)

X_city_df

 Berkeley Lamorinda Piedmont Richmond
0 1.0 0.0 0.0 0.0
1 1.0 0.0 0.0 0.0
2 1.0 0.0 0.0 0.0
...
2664 0.0 0.0 0.0 1.0
2665 0.0 0.0 0.0 1.0
2666 0.0 0.0 0.0 1.0

2667 rows × 4 columns

Let’s fit a model using these one-hot encoded features:

y_log = sfh['log_price']

model_city = LinearRegression(fit_intercept=False).fit(X_city_df, y_log)

And examine the multiple R2:

R-square for city model: 0.57

If we only know the city where a house is located, the model does a reasonably good
job of estimating its sale price. Here are the coefficients from the fit:

model_city.coef_

array([5.87, 6.03, 6.1 , 5.67])

402 | Chapter 15: Linear Models

As expected from the box plots, the estimated sale price (in log $) depends on the city.
But if we know the size of the house as well as the city, we should have an even better
model. We saw earlier that the simple log–log model that explains sale price by house
size fits reasonably well, so we expect that the city feature (as one-hot encoded vari‐
ables) should further improve the model.

Such a model looks like this:

yi ≈ θ1xi + θBxi, B + θLxi, L + θPxi, P + θRxi, R

Notice that this model describes the relationship between log(price), which is repre‐
sented as y, and log(size), which is represented as x, as linear with the same coeffi‐
cient for log(size) for each city. But the intercept term depends on the city:

yi ≈ θ1xi + θB for houses in Berkeley
yi ≈ θ1xi + θL for houses in Lamorinda
yi ≈ θ1xi + θP for houses in Piedmont
yi ≈ θ1xi + θR for houses in Richmond

We next make a facet of scatterplots, one for each city, to see if this relationship
roughly holds:

fig = px.scatter(sfh, x='log_bsqft', y='log_price',
 facet_col='city', facet_col_wrap=2,
 labels={'log_bsqft':'Building size (log ft^2)',
 'log_price':'Sale price (log USD)'},
 width=500, height=400)

fig.update_layout(margin=dict(t=30))
fig

Feature Engineering for Categorical Measurements | 403

The shift is evident in the scatterplot. We concatenate our two design matrices
together to fit the model that includes size and city:

X_size = sfh['log_bsqft']

X_city_size = pd.concat([X_size.reset_index(drop=True), X_city_df], axis=1)
X_city_size.drop(0)

 log_bsqft Berkeley Lamorinda Piedmont Richmond
1 3.14 1.0 0.0 0.0 0.0
2 3.31 1.0 0.0 0.0 0.0
3 2.96 1.0 0.0 0.0 0.0
...
2664 3.16 0.0 0.0 0.0 1.0
2665 3.47 0.0 0.0 0.0 1.0
2666 3.44 0.0 0.0 0.0 1.0

2666 rows × 5 columns

Now let’s fit a model that incorporates the quantitative feature, the house size, and the
qualitative feature, location (city):

404 | Chapter 15: Linear Models

model_city_size = LinearRegression(fit_intercept=False).fit(X_city_size, y_log)

The intercepts reflect which cities have more expensive houses, even taking into
account the size of the house:

model_city_size.coef_

array([0.62, 3.89, 3.98, 4.03, 3.75])

R-square for city and log(size): 0.79

This fit, which includes the nominal variable city and the log-transformed house
size, is better than both the simple log–log model with house size and the model that
fits constants for each city.

Notice that we dropped the intercept from the model so that each subgroup has its
own intercept. However, a common practice is to remove one of the one-hot encoded
features from the design matrix and keep the intercept. For example, if we drop the
feature for Berkeley houses and add the intercept, then the model is:

θ0 + θ1xi + θLxi, L + θPxi, P + θRxi, R

The meaning of the coefficients for the dummy variables has changed in this repre‐
sentation. For example, consider this equation for a house in Berkeley and a house in
Piedmont:

θ0 + θ1xi for a house in Berkeley
θ0 + θ1xi + θP for a house in Piedmont

In this representation, the intercept θ0 is for Berkeley houses, and the coefficient θP
measures the typical difference between a Piedmont house and a Berkeley house. In
this representation, we can more easily compare θP to 0 to see if these two cities have
essentially the same average price.

If we include the intercept and all of the city variables, then the columns of the design
matrix are linearly dependent, which means that we can’t solve for the coefficients.
Our predictions will be the same in either case, but there will not be a unique solution
to the minimization.

We also prefer the representation of the model that drops one dummy variable and
includes an intercept term when we include one-hot encodings of two categorical
variables. This practice maintains consistency in the interpretation of the coefficients.

We demonstrate how to build a model with two sets of dummy variables, using the
statsmodels library. This library uses a formula language to describe the model to fit,
so we don’t need to create the design matrix ourselves. We import the formula API:

Feature Engineering for Categorical Measurements | 405

import statsmodels.formula.api as smf

Let’s first repeat our fit of the model with the nominal variable city and house size to
show how to use the formula language and compare the results:

model_size_city = smf.ols(formula='log_price ~ log_bsqft + city',
 data=sfh).fit()

The string provided for the formula parameter describes the model to fit. The model
has log_price as the outcome and fits a linear combination of log_bsqft and city
as explanatory variables. Notice that we do not need to create dummy variables to fit
the model. Conveniently, smf.ols does the one-hot encoding of the city feature for
us. The fitted coefficients of the following model include an intercept term and drop
the Berkeley indicator variable:

print(model_size_city.params)

Intercept 3.89
city[T.Lamorinda] 0.09
city[T.Piedmont] 0.14
city[T.Richmond] -0.15
log_bsqft 0.62
dtype: float64

If we want to drop the intercept, we can add –1 to the formula, which is a convention
that indicates dropping the column of ones from the design matrix. In this particular
example, the space spanned by all of the one-hot encoded features is equivalent to the
space spanned by the 1 vector and all but one of the dummy variables, so the fit is the
same. However, the coefficients are different as they reflect the different parameteri‐
zation of the design matrix:

smf.ols(formula='log_price ~ log_bsqft + city - 1', data=sfh).fit().params

city[Berkeley] 3.89
city[Lamorinda] 3.98
city[Piedmont] 4.03
city[Richmond] 3.75
log_bsqft 0.62
dtype: float64

Additionally, we can add interaction terms between the city and size variables to
allow each city to have a different coefficient for size. We specify this in the formula
by adding the term log_bsqft:city. We don’t go into details here.

Now let’s fit a model with two categorical variables: the number of bedrooms and the
city. Recall that we earlier reassigned the count of bedrooms that were above 6 to 6,
which essentially collapses 6, 7, 8, … into the category 6+. We can see this relation‐
ship in the box plots of price (log $) by the number of bedrooms:

px.box(sfh, x="br", y="log_price", width=450, height=250,
 labels={'br':'Number of bedrooms','log_price':'Sale price (log USD)'})

406 | Chapter 15: Linear Models

The relationship does not appear linear: for each additional bedroom, the sale price
does not increase by the same amount. Given that the number of bedrooms is dis‐
crete, we can treat this feature as categorical, which allows each bedroom encoding to
contribute a different amount to the cost:

model_size_city_br = smf.ols(formula='log_price ~ log_bsqft + city + C(br)',
 data=sfh).fit()

We have used the term C(br) in the formula to indicate that we want the number of
bedrooms, which is numeric, to be treated like a categorical variable.

Let’s examine the multiple R2 from the fit:

model_size_city_br.rsquared.round(2)

0.79

The multiple R2 has not increased even though we have added five more one-hot
encoded features. The R2 is adjusted for the number of parameters in the model and
by this measure is no better than the earlier one that included only city and size.

In this section, we introduced feature engineering for qualitative features. We saw
how the one-hot encoding technique lets us include categorical data in linear models
and gives a natural interpretation for model parameters.

Summary
Linear models help us describe relationships between features. We discussed the sim‐
ple linear model and extended it to linear models in multiple variables. Along the
way, we applied mathematical techniques that are widely useful in modeling—calcu‐
lus to minimize loss for the simple linear model and matrix geometry for the multiple
linear model.

Summary | 407

Linear models may seem basic, but they are used for all sorts of tasks today. And they
are flexible enough to allow us to include categorical features as well as nonlinear
transformations of variables, such as log transformations, polynomials, and ratios.
Linear models have the advantage of being broadly interpretable for nontechnical
people, yet sophisticated enough to capture many common patterns in data.

It can be tempting to throw all of the variables available to us into a model to get the
“best fit possible.” But we should keep in mind the geometry of least squares when
fitting models. Recall that p explanatory variables can be thought of as p vectors in n-
dimensional space, and if these vectors are highly correlated, then the projections
onto this space will be similar to projections onto smaller spaces made up of fewer
vectors. This implies that:

• Adding more variables may not provide a large improvement in the model.
• Interpretation of the coefficients can be difficult.
• Several models can be equally effective in predicting/explaining the response

variable.

If we are concerned with making inferences, where we want to interpret/understand
the model, then we should err on the side of simpler models. On the other hand, if
our primary concern is the predictive ability of a model, then we tend not to concern
ourselves with the number of coefficients and their interpretation. But this “black
box” approach can lead to models that, say, overly depend on anomalous values in the
data or models that are inadequate in other ways. So be careful with this approach,
especially when the predictions may be harmful to people.

In this chapter, we used linear models in a descriptive way. We introduced a few
notions for deciding when to include a feature in a model by examining residuals for
patterns, comparing the size of standard errors and the change in the multiple R2.
Oftentimes, we settled for a simpler model that was easier to interpret. In the next
chapter, we look at other, more formal tools for choosing the features to include in a
model.

408 | Chapter 15: Linear Models

CHAPTER 16

Model Selection

So far when we fit models, we have used a few strategies to decide which features to
include:

• Assess model fit with residual plots.
• Connect the statistical model to a physical model.
• Keep the model simple.
• Compare improvements in the standard deviation of the residuals and in the

MSE between increasingly complex models.

For example, when we examined the one-variable model of upward mobility in
Chapter 15, we found curvature in the residual plot. Adding a second variable greatly
improved the fit in terms of average loss (MSE and, relatedly, multiple R2), but some
curvature remained in the residuals. A seven-variable model made little improvement
over the two-variable model in terms of a decrease in MSE, so although the two-
variable model still showed some patterns in the residuals, we opted for this simpler
model.

As another example, when we model the weight of a donkey in Chapter 18, we will
take guidance from a physical model. We’ll ignore the donkey’s appendages and draw
on the similarity between a barrel and a donkey’s body to begin fitting a model that
explains weight by its length and girth (comparable to a barrel’s height and circumfer‐
ence). We’ll then continue to adjust that model by adding categorical features related
to the donkey’s physical condition and age, collapsing categories, and excluding other
possible features to keep the model simple.

The decisions we make in building these models are based on judgment calls, and in
this chapter we augment these with more formal criteria. To begin, we provide an
example that shows why it’s typically not a good idea to include too many features in

409

1 These data are from Daniel T. Kaplan (CreateSpace Independent Publishing Platform, 2009).

a model. This phenomenon, called overfitting, often leads to models that follow the
data too closely and capture some of the noise in the data. Then, when new observa‐
tions come along, the predictions are worse than those from a simpler model. The
remainder of the chapter provides techniques, such as the train-test split, cross-
validation, and regularization, for limiting the impact of overfitting. These techniques
are especially helpful when there are a large number of potential features to include in
a model. We also provide a synthetic example, where we know the true model, to
explain the concepts of model variance and bias and how they relate to over- and
underfitting.

Overfitting
When we have many features available to include in a model, choosing which ones to
include or exclude rapidly gets complicated. In the upward mobility example in
Chapter 15, we chose two of the seven variables to fit the model, but there are 21 pairs
of features that we could have examined and fitted for a two-variable model. And
there are over one hundred models to choose from if we consider all one-, two-, …,
seven-variable models. It can be hard to examine hundreds of residual plots to decide
how simple is simple enough, and to settle on a model. Unfortunately, the notion of
minimizing MSE isn’t entirely helpful either. With each variable that we add to a
model, the MSE typically gets smaller. Recall from the geometric perspective of model
fitting (Chapter 15) that adding a feature to a model adds an n-dimensional vector to
the feature space, and the error between the outcome vector and its projection into
the space spanned by the explanatory variables shrinks. We might view this as a good
thing because our model fits the data more closely, but there is a danger in overfitting.

Overfitting happens when the model follows the data too closely and picks up the
variability in the random noise in the outcome. When this happens, new observations
are not well-predicted. An example helps clarify this idea.

Example: Energy Consumption
In this example, we examine a dataset you can download that contains information
from utility bills for a private residence in Minnesota. We have records of the
monthly gas usage in a home (cubic feet) and the average temperature that month
(degrees Fahrenheit).1 We first read in the data:

heat_df = pd.read_csv("data/utilities.csv", usecols=["temp", "ccf"])
heat_df

410 | Chapter 16: Model Selection

https://oreil.ly/ngD4G

 temp ccf
0 29 166
1 31 179
2 15 224
...
96 76 11
97 55 32
98 39 91

99 rows × 2 columns

We will begin by looking at a scatterplot of gas consumption as a function of
temperature:

The relationship shows curvature (left plot), but when we try to straighten it with a
log transformation (right plot), a different curvature arises in the low-temperature
region. Additionally, there are two unusual points. When we refer back to the docu‐
mentation, we find that these points represent recording errors, so we remove them.

Let’s see if a quadratic curve can capture the relationship between gas usage and tem‐
perature. Polynomials are still considered linear models. They are linear in their poly‐
nomial features. For example, we can express a quadratic model as:

θ0 + θ1x + θ2x2

Overfitting | 411

This model is linear in the features x and x2, and in matrix notation we can write this
model as Xθ, where X is the design matrix:

1 x1 x1
2

1 x2 x2
2

⋮ ⋮ ⋮

1 xn xn
2

We can create the polynomial features of the design matrix with the Polynomial
Features tool in scikit-learn:

y = heat_df['ccf']
X = heat_df[['temp']]

from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(degree=2, include_bias=False)
poly_features = poly.fit_transform(X)
poly_features

array([[29., 841.],
 [31., 961.],
 [15., 225.],
 ...,
 [76., 5776.],
 [55., 3025.],
 [39., 1521.]])

We set the parameter include_bias to False because we plan to fit the polynomial
with the LinearRegression method in scikit-learn, and by default it includes the
constant term in the model. We fit the polynomial with:

from sklearn.linear_model import LinearRegression

model_deg2 = LinearRegression().fit(poly_features, y)

To get a quick idea as to the quality of the fit, let’s overlay the fitted quadratic on the
scatterplot and also look at the residuals:

412 | Chapter 16: Model Selection

The quadratic captures the curve in the data quite well, but the residuals show a slight
upward trend in the temperature range of 70°F to 80°F, which indicates some lack of
fit. There is also some funneling in the residuals, where the variability in gas con‐
sumption is greater in the colder months. We might expect this behavior since we
have only the monthly average temperature.

For comparison, we fit a few more models with higher-degree polynomials and col‐
lectively examine the fitted curves:

poly12 = PolynomialFeatures(degree=12, include_bias=False)
poly_features12 = poly12.fit_transform(X)

degrees = [1, 2, 3, 6, 8, 12]

mods = [LinearRegression().fit(poly_features12[:, :deg], y)
 for deg in degrees]

We use the polynomial features in this section to demonstrate over-
fitting, but directly fitting the x, x2, x3, … polynomials is not advis‐
able in practice. Unfortunately, these polynomial features tend to
be highly correlated. For example, the correlation between x and x2

for the energy data is 0.98. Highly correlated features give unstable
coefficients, where a small change in an x-value can lead to a large
change in the coefficients of the polynomial. Also, when the x-
values are large, the normal equations are poorly conditioned and
the coefficients can be difficult to interpret and compare.
A better practice is to use polynomials that have been constructed
to be orthogonal to one another. These polynomials fill the same
space as the original polynomials, but they are uncorrelated with
one another and give a more stable fit.

Overfitting | 413

Let’s place all of the polynomial fits on the same graph so that we can see how the
higher-degree polynomials bend more and more strangely:

We can also visualize the different polynomial fits in separate facets:

The degree 1 curve (the straight line) in the upper-left facet misses the curved pattern
in the data. The degree 2 curve begins to capture it, and the degree 3 curve looks like

414 | Chapter 16: Model Selection

an improvement, but notice the upward bend at the right side of the plot. The poly‐
nomials of degrees 6, 8, and 12 follow the data increasingly closely, as they get
increasingly curvy. These polynomials seem to fit spurious bumps in the data. Alto‐
gether, these six curves illustrate under- and overfitting. The fitted line in the upper
left underfits and misses the curvature entirely. And the degree 12 polynomial in the
bottom right definitely overfits with a wiggly pattern that we don’t think makes sense
in this context.

In general, as we add more features, models get more complex and the MSE drops,
but at the same time, the fitted model grows increasingly erratic and sensitive to the
data. When we overfit, the model follows the data too closely, and predictions are
poor for new observations. One simple technique to assess a fitted model is to com‐
pute the MSE on new data, data that were not used in building the model. Since we
don’t typically have the capacity to acquire more data, we set aside some of the origi‐
nal data to evaluate the fitted model. This technique is the topic of the next section.

Train-Test Split
Although we want to use all of our data in building a model, we also want to get a
sense of how the model behaves with new data. We often do not have the luxury of
collecting additional data to assess a model, so instead we set aside a portion of our
data, called the test set, to stand in for new data. The remainder of the data is called
the train set, and we use this portion to build the model. Then, after we have chosen a
model, we pull out the test set and see how well the model (fitted on the train set)
predicts the outcomes in the test set. Figure 16-1 demonstrates this idea.

Figure 16-1. The train-test split divides the data into two parts: the train set is used to
build the model and the test set evaluates that model

Typically, the test set consists of 10% to 25% of the data. What might not be clear
from the diagram is that this division into two parts is often made at random, so the
train and test sets are similar to each other.

We can describe this process using the notion introduced in Chapter 15. The design
matrix, X, and outcome, y, are each divided into two parts; the design matrix, labeled

Train-Test Split | 415

XT, and corresponding outcomes, yT, form the train set. We minimize the average
squared loss over θ with these data:

min
θ
‖yT − XTθ‖2

The coefficient, θ̂ T, that minimizes the training error is used to predict outcomes for
the test set, which is labeled XS and yS:

‖yS − XSθ̂ T‖
2

Since XS and yS are not used to build the model, they give a reasonable estimate of the
loss we might expect for a new observation.

We demonstrate the train-test split with our polynomial model for gas consumption
from the previous section. To do this, we carry out the following steps:

1. Split the data at random into two parts, the train and test sets.
2. Fit several polynomial models to the train set and choose one.
3. Compute the MSE on the test set for the chosen polynomial (with coefficients fit‐

ted on the train set).

For the first step, we divide the data with the train_test_split method in scikit-
learn and set aside 22 observations for model evaluation:

from sklearn.model_selection import train_test_split

test_size = 22

X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=test_size, random_state=42)

print(f'Training set size: {len(X_train)}')
print(f'Test set size: {len(X_test)}')

Training set size: 75
Test set size: 22

As in the previous section, we fit models of gas consumption to various polynomials
in temperature. But this time, we use only the training data:

poly = PolynomialFeatures(degree=12, include_bias=False)
poly_train = poly.fit_transform(X_train)

degree = np.arange(1,13)

416 | Chapter 16: Model Selection

mods = [LinearRegression().fit(poly_train[:, :j], y_train)
 for j in degree]

We find the MSE for each of these models:

from sklearn.metrics import mean_squared_error

error_train = [
 mean_squared_error(y_train, mods[j].predict(poly_train[:, : (j + 1)]))
 for j in range(12)
]

To visualize the change in MSE, we plot MSE for each fitted polynomial against its
degree:

px.line(x=degree, y=error_train, markers=True,
 labels=dict(x='Degree of polynomial', y='Train set MSE'),
 width=350, height=250)

Notice that the training error decreases with the additional model complexity. We saw
earlier that the higher-order polynomials showed a wiggly behavior that we don’t
think reflects the underlying structure in the data. With this in mind, we might
choose a model that is simpler but shows a large reduction in MSE. That could be
degree 3, 4, or 5. Let’s go with degree 3 since the difference between these three mod‐
els in terms of MSE is quite small and it’s the simplest.

Now that we have chosen our model, we provide an independent assessment of its
MSE using the test set. We prepare the design matrix for the test set and use the
degree 3 polynomial fitted on the train set to predict the outcome for each row in the
test set. Lastly, we compute the MSE for the test set:

poly_test = poly.fit_transform(X_test)
y_hat = mods[2].predict(poly_test[:, :3])

Train-Test Split | 417

mean_squared_error(y_test, y_hat)

307.44460133992294

The MSE for this model is quite a bit larger than the MSE computed on the training
data. This demonstrates the problem with using the same data to fit and evaluate a
model: the MSE doesn’t adequately reflect the MSE for a new observation. To further
demonstrate the problem with overfitting, we compute the error for the test for each
of these models:

error_test = [
 mean_squared_error(y_test, mods[j].predict(poly_test[:, : (j + 1)]))
 for j in range(12)
]

In practice, we do not look at the test set until we have committed to a model. Alter‐
nating between fitting a model on the train set and evaluating it on the test set can
lead to overfitting. But for demonstration purposes, we plot the MSE on the test set
for all of the polynomial models we fitted:

Notice how the MSE for the test set is larger than the MSE for the train set for all
models, not just the model that we selected. More importantly, notice how the MSE
for the test set initially decreases as the model goes from underfitting to one that fol‐
lows the curvature in the data a bit better. Then, as the model grows in complexity,
the MSE for the test set increases. These more complex models overfit the training
data and lead to large errors in predicting the test set. An idealization of this phenom‐
enon is captured in the diagram in Figure 16-2.

418 | Chapter 16: Model Selection

Figure 16-2. As the model grows in complexity, the train set error shrinks and the test set
error increases

The test data provides an assessment of the prediction error for new observations. It
is crucial to use the test set only once, after we have committed to a model. Other‐
wise, we fall into the trap of using the same data to choose and evaluate the model.
When choosing the model, we fell back on the simplicity argument because we were
aware that increasingly complex models tend to overfit. However, we can extend the
train-test method to help select the model as well. This is the topic of the next section.

Cross-Validation
We can use the train-test paradigm to help us choose a model. The idea is to further
divide the train set into separate parts where we fit the model on one part and evalu‐
ate it on another. This approach is called cross-validation. We describe one version,
called k-fold cross-validation. Figure 16-3 shows the idea behind this division of the
data.

Figure 16-3. An example of fivefold cross-validation in which the train set is divided into
five parts that are used in turn to validate models built on the remainder of the data

Cross-Validation | 419

Cross-validation can help select the general form of a model. By this we mean the
degree of the polynomial, the number of features in the model, or a cutoff for a regu‐
larization penalty (covered in the next section). The basic steps behind k-fold cross-
validation are as follows:

1. Divide the train set into k parts of roughly the same size; each part is called a fold.
Use the same technique that was used to create the train and test sets to make the
folds. Typically, we divide the data at random.

2. Set one fold aside to act as a test set:
• Fit all models on the remainder of the training data (the training data less the

particular fold).
• Use the fold you set aside to evaluate all of these models.

3. Repeat this process for a total of k times, where each time you set aside one fold,
use the rest of the train set to fit the models, and evaluate them on the fold that
was set aside.

4. Combine the error in fitting each model across the folds, and choose the model
with the smallest error.

These fitted models will not have identical coefficients across folds. As an example,
when we fit a polynomial of, say, degree 3, we average the MSE across the k folds to
get an average MSE for the k fitted polynomials of degree 3. We then compare the
MSEs and choose the degree of the polynomial with the lowest MSE. The actual coef‐
ficients for the x, x2, and x3 terms in the cubic polynomial are not the same in each of
the k fits. Once the polynomial degree is selected, we refit the model using all of the
training data and evaluate it on the test set. (We haven’t used the test set in any of the
earlier steps to select the model.)

Typically, we use 5 or 10 folds. Another popular choice puts one observation in each
fold. This special case is called leave-one-out cross-validation. Its popularity stems
from the simplicity in adjusting a least squares fit to have one fewer observation.

Generally, k-fold cross-validation takes some computation time since we typically
have to refit each model from scratch for each fold. The scikit-learn library pro‐
vides a convenient sklearn.model_selection.KFold class to implement k-fold
cross-validation.

To give you an idea of how k-fold cross-validation works, we’ll demonstrate the tech‐
nique on the gas consumption example. However, this time we’ll fit a different type of
model. In the original scatterplot of the data, it looks like the points fall along two
connected line segments. In cold temperatures, the relationship between gas con‐
sumption and temperature looks roughly linear with a negative slope of about −4

420 | Chapter 16: Model Selection

https://oreil.ly/tnHTv

cubic ft/degree, and in warmer months, the relationship appears nearly flat. So, rather
than fitting a polynomial, we can fit a bent line to the data.

Let’s start by fitting a line with a bend at 65 degrees. To do this, we create a feature
that enables the points with temperatures above 65°F to have a different slope. The
model is:

y = θ0 + θ1x + θ2(x − 65)+

Here, ()+ stands for “positive part,” so when x is less than 65 it evaluates to 0, and
when x is 65 or greater it is just x − 65. We create this new feature and add it to the
design matrix:

y = heat_df["ccf"]
X = heat_df[["temp"]]
X["temp65p"] = (X["temp"] - 65) * (X["temp"] >= 65)

Then we fit the model with these two features:

bend_index = LinearRegression().fit(X, y)

Let’s overlay this fitted “curve” on the scatterplot to see how well it captures the shape
of the data:

This model appears to fit the data much better than a polynomial. But many bent line
models are possible. The line might bend at 55 degrees or 60 degrees, and so on. We
can use k-fold cross-validation to choose the temperature value at which the line
bends. Let’s consider models with bends at 40, 41, 42, …, 68, 69 degrees. For each of
these, we need to create the additional feature to enable the line to bend there:

Cross-Validation | 421

bends = np.arange(40, 70, 1)

for i in bends:
 col = "temp" + i.astype("str") + "p"
 heat_df[col] = (heat_df["temp"] - i) * (heat_df["temp"] >= i)
heat_df

 temp ccf temp40p temp41p ... temp66p temp67p temp68p temp69p
0 29 166 0 0 ... 0 0 0 0
1 31 179 0 0 ... 0 0 0 0
2 15 224 0 0 ... 0 0 0 0
...
96 76 11 36 35 ... 10 9 8 7
97 55 32 15 14 ... 0 0 0 0
98 39 91 0 0 ... 0 0 0 0

97 rows × 32 columns

The first step in cross-validation is to create our train and test sets. Like before, we
choose 22 observations at random to be placed in the test set. That leaves 75 for the
train set:

y = heat_df['ccf']
X = heat_df.drop(columns=['ccf'])

test_size = 22

X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=test_size, random_state=0)

Now we can divide the train set into folds. We use three folds so that we have 25
observations in each fold. For each fold, we fit 30 models, one for each bend in the
line. For this step, we divide the data with the KFold method in scikit-learn:

from sklearn.model_selection import KFold

kf = KFold(n_splits=3, shuffle=True, random_state=42)

validation_errors = np.zeros((3, 30))

def validate_bend_model(X, y, X_valid, y_valid, bend_index):
 model = LinearRegression().fit(X.iloc[:, [0, bend_index]], y)
 predictions = model.predict(X_valid.iloc[:, [0, bend_index]])
 return mean_squared_error(y_valid, predictions)

for fold, (train_idx, valid_idx) in enumerate(kf.split(X_train)):
 cv_X_train, cv_X_valid = (X_train.iloc[train_idx, :],
 X_train.iloc[valid_idx, :])

422 | Chapter 16: Model Selection

 cv_Y_train, cv_Y_valid = (y_train.iloc[train_idx],
 y_train.iloc[valid_idx])

 error_bend = [
 validate_bend_model(
 cv_X_train, cv_Y_train, cv_X_valid, cv_Y_valid, bend_index
)
 for bend_index in range(1, 31)
]

 validation_errors[fold][:] = error_bend

Then we find the mean validation error across the three folds and plot them against
the location of the bend:

totals = validation_errors.mean(axis=0)

The MSE looks quite flat for 57 to 60 degrees. The minimum occurs at 58, so we
choose that model. To assess this model on the test set, we first fit the bent line model
at 58 degrees on the entire train set:

bent_final = LinearRegression().fit(
 X_train.loc[:, ["temp", "temp58p"]], y_train
)

Then we use the fitted model to predict gas consumption for the test set:

y_pred_test = bent_final.predict(X_test.loc[:, ["temp", "temp58p"]])

mean_squared_error(y_test, y_pred_test)

71.40781435952441

Cross-Validation | 423

Let’s overlay the bent-line fit on the scatterplot and examine the residuals to get an
idea as to the quality of the fit:

The fitted curve looks reasonable, and the residuals are much smaller than those from
the polynomial fit.

For teaching purposes in this section, we use KFold to manually
split up the training data into three folds, then find the model vali‐
dation errors using a loop. In practice, we suggest using
sklearn.model_selection.GridSearchCV with an sklearn.pipe
line.Pipeline object, which can automatically break the data into
training and validation sets and find the model that has the lowest
average validation error across the folds.

Using cross-validation to manage model complexity has a couple of critical limita‐
tions: typically it requires the complexity to vary discretely, and there may not be a
natural way to order the models. Rather than changing the dimensions of a sequence
of models, we can fit a large model and apply constraints on the size of the coeffi‐
cients. This notion is called regularization and is the topic of the next section.

Regularization
We just saw how cross-validation can help find a dimension for a fitted model that
balances under- and overfitting. Rather than selecting the dimension of the model,
we can build a model with all of the features, but restrict the size of the coefficients.
We keep from overfitting by adding to the MSE a penalty term on the size of the coef‐
ficients. The penalty, called a regularization term, is λ∑ j = 1

p θ j
2. We fit the model by

minimizing the combination of mean squared error plus this penalty:

424 | Chapter 16: Model Selection

1
n ∑

i = 1

n
(yi − xiθ)2 + λ ∑

j = 1

p
θ j

2

When the regularization parameter, λ, is large, it penalizes large coefficients. (We typi‐
cally choose it by cross-validation.)

Penalizing the square of the coefficients is called L2 regularization, or ridge regression.
Another popular regularization penalizes the absolute size of the coefficients:

1
n ∑

i = 1

n
(yi − xiθ)2 + λ ∑

j = 1

p
|θ j|

This L1 regularized linear model is also called lasso regression (lasso stands for Least
Absolute Shrinkage and Selection Operator).

To get an idea about how regularization works, let’s think about the extreme cases:
when λ is really large and when it’s close to 0 (λ is never negative). With a big regula‐
rization parameter, the coefficients are heavily penalized, so they shrink. On the other
hand, when λ is tiny, the coefficients aren’t restricted. In fact, when λ is 0, we’re back
in the world of ordinary least squares. A couple of issues crop up when we think
about controlling the size of the coefficients through regularization:

• We do not want to regularize the intercept term. This way, a large penalty fits a
constant model.

• When features have very different scales, the penalty can impact them differently,
with large-valued features being penalized more than others. To avoid this, we
standardize all of the features to have mean 0 and variance 1 before fitting the
model.

Let’s look at an example with 35 features.

Model Bias and Variance
In this section, we provide a different way to think about the problem of over- and
underfitting. We carry out a simulation study where we generate synthetic data from
a model of our design. This way, we know the true model, and we can see how close
we get to the truth when we fit models to the data.

We concoct a general model of data as follows:

y = g(x) + �

Model Bias and Variance | 425

This expression makes it easy to see the two components of the model: the signal g(x)
and the noise �. In our model, we assume the noise has no trend or pattern, constant
variance, and each observation’s noise is independent of the others’.

As an example, let’s take g(x) = sin(x) + 0.3x and the noise from a normal curve with
center 0 and SD = 0.2. We can generate data from this model with the following
functions:

def g(x):
 return np.sin(x) + 0.3 * x

def gen_noise(n):
 return np.random.normal(scale=0.2, size=n)

def draw(n):
 points = np.random.choice(np.arange(0, 10, 0.05), size=n)
 return points, g(points) + gen_noise(n)

Let’s generate 50 data points (xi, yi), i = 1, …, 50, from this model:

np.random.seed(42)

xs, ys = draw(50)
noise = ys - g(xs)

We can plot our data, and since we know the true signal, we can find the errors and
plot them too:

The plot on the left shows g as a dashed curve. We can also see that the (x, y) pairs
form a scatter of dots about this curve. The righthand plot shows the errors, y − g(x),
for the 50 points. Notice that they do not form a pattern.

426 | Chapter 16: Model Selection

When we fit a model to the data, we minimize the mean squared error. Let’s write this
minimization in generality:

min
f ∈ ℱ

1
n ∑

i = 1

n
[yi − f (xi)]2

The minimization is over the collection of functions ℱ . We have seen in this chapter
that this collection of functions might be polynomials of 12 degrees, or simply bent
lines. An important point is that the true model, g, doesn’t have to be one of the func‐
tions in the collection.

Let’s take ℱ to be the collection of second-degree polynomials; in other words, func‐
tions that can be expressed as θ0 + θ1x + θ2x2. Since g(x) = sin(x) + 0.3x, it doesn’t
belong to the collection of functions that we are optimizing over.

Let’s fit a polynomial to our 50 data points:

poly = PolynomialFeatures(degree=2, include_bias=False)
poly_features = poly.fit_transform(xs.reshape(-1, 1))

model_deg2 = LinearRegression().fit(poly_features, ys)

Fitted Model: 0.98 + -0.19x + 0.05x^2

Again, we know the true model is not quadratic (because we built it). Let’s plot the
data and the fitted curve:

The quadratic doesn’t fit the data well, and it doesn’t represent the underlying curve
well either because the set of models that we are choosing from (second-order poly‐
nomials) can’t capture the curvature in g.

Model Bias and Variance | 427

If we repeat this process and generate another 50 points from the true model and fit a
second-degree polynomial to these data, then the fitted coefficients of the quadratic
will change because it depends on the new set of data. We can repeat this process
many times, and average the fitted curves. This average curve will resemble the typi‐
cal best fit of a second-degree polynomial to 50 points from our true model. To
demonstrate this notion, let’s generate 25 sets of 50 data points and fit a quadratic to
each dataset:

def fit(n):
 xs_new = np.random.choice(np.arange(0, 10, 0.05), size=n)
 ys_new = g(xs_new) + gen_noise(n)
 X_new = xs_new.reshape(-1, 1)
 mod_new = LinearRegression().fit(poly.fit_transform(X_new), ys_new)
 return mod_new.predict(poly_features_x_full).flatten()

fits = [fit(50) for j in range(25)]

We can show on a plot all 25 fitted models along with the true function, g, and the
average of the fitted curves, f̄ . To do this, we use transparency for the 25 fitted mod‐
els to distinguish overlapping curves:

We can see that the 25 fitted quadratics vary with the data. This concept is called
model variation. The average of the 25 quadratics is represented by the solid black
line. The difference between the average quadratic and the true curve is called the
model bias.

When the signal, g, does not belong to the model space, ℱ , we have model bias. If the
model space can approximate g well, then the bias is small. For instance, a 10-degree
polynomial can get pretty close to the g used in our example. On the other hand, we
have seen earlier in this chapter that higher-degree polynomials can overfit the data
and vary a lot trying to get close to the data. The more complex the model space, the
greater the variability in the fitted model. Underfitting with too simple a model can
lead to high model bias (the difference between g and f̄), and overfitting with too

428 | Chapter 16: Model Selection

complex a model can result in high model variance (the fluctuations of f̂ around f̄).
This notion is called the bias-variance trade-off. Model selection aims to balance these
competing sources of a lack of fit.

Summary
In this chapter, we saw that problems arise when we minimize mean squared error to
both fit a model and evaluate it. The train-test split helps us get around this problem,
where we fit a model with the train set and evaluate our fitted model on test data that
have been set aside.

It’s important to not “overuse” the test set, so we keep it separate until we have com‐
mitted to a model. To help us commit, we might use cross-validation, which imitates
the division of data into test and train sets. Again, it’s important to cross-validate
using only the train set and keep the original test set away from any model selection
process.

Regularization takes a different approach and penalizes the mean squared error to
keep the model from fitting the data too closely. In regularization, we use all of the
data available to fit the model, but shrink the size of the coefficients.

The bias-variance trade-off allows us to more precisely describe the modeling phe‐
nomena that we have seen in this chapter: underfitting relates to model bias; overfit‐
ting results in model variance. In Figure 16-4, the x-axis measures model complexity
and the y-axis measures these two components of model misfit: model bias and
model variance. Notice that as the complexity of the model being fit increases, model
bias decreases and model variance increases. Thinking in terms of test error, we have
seen this error first decrease and then increase as the model variance outweighs the
decrease in model bias. To select a useful model, we must strike a balance between
model bias and variance.

Figure 16-4. Bias-variance trade-off

Summary | 429

Collecting more observations reduces bias if the model can fit the population process
exactly. If the model is inherently incapable of modeling the population (as in our
synthetic example), even infinite data cannot get rid of model bias. In terms of var‐
iance, collecting more data also reduces variance. One recent trend in data science is
to select a model with low bias and high intrinsic variance (such as a neural network)
but to collect many data points so that the model variance is low enough to make
accurate predictions. While effective in practice, collecting enough data for these
models tends to require large amounts of time and money.

Creating more features, whether useful or not, typically increases model variance.
Models with many parameters have many possible combinations of parameters and
therefore have higher variance than models with few parameters. On the other hand,
adding a useful feature to the model, such as a quadratic feature when the underlying
process is quadratic, reduces bias. But even adding a useless feature rarely increases
bias.

Being aware of the bias-variance trade-off can help you do a better job of fitting mod‐
els. And using techniques like the train-test split, cross-validation, and regularization
can ameliorate this issue.

Another part of modeling considers the variation in the fitted coefficients and curve.
We might want to provide a confidence interval for a coefficient or a prediction band
for a future observation. These intervals and bands give a sense of the accuracy of the
fitted model. We discuss this notion next.

430 | Chapter 16: Model Selection

CHAPTER 17

Theory for Inference and Prediction

When you want to generalize your findings beyond descriptions for your collection
of data to a larger setting, the data needs to be representative of that larger world. For
example, you may want to predict air quality at a future time based on a sensor read‐
ing (Chapter 12), test whether an incentive improves the productivity of contributors
based on experimental findings (Chapter 3), or construct an interval estimate for the
amount of time you might spend waiting for a bus (Chapter 5). We touched on all of
these scenarios in earlier chapters. In this chapter, we’ll formalize the framework for
making predictions and inferences.

At the core of this framework is the notion of a distribution, be it a population,
empirical (aka sample), or probability distribution. Understanding the connections
between these distributions is central to the basics of hypothesis testing, confidence
intervals, prediction bands, and risk. We begin with a brief review of the urn model,
introduced in Chapter 3, then we introduce formal definitions of hypothesis tests,
confidence intervals, and prediction bands. We use simulation in our examples,
including the bootstrap as a special case. We wrap up the chapter with formal defini‐
tions of expectation, variance, and standard error—essential concepts in the theory of
testing, inference, and prediction.

Distributions: Population, Empirical, Sampling
The population, sampling, and empirical distributions are important concepts that
guide us when we make inferences about a model or predictions for new observa‐
tions. Figure 17-1 provides a diagram that can help distinguish between them. The
diagram uses the notions of population and access frame from Chapter 2 and the urn
model from Chapter 3. On the left is the population that we are studying, represented
as marbles in an urn with one marble for each unit. We have simplified the situation
to where the access frame and the population are the same; that is, we can access

431

every unit in the population. (The problems that arise when this is not the case are
covered in Chapters 2 and 3.) The arrow from the urn to the sample represents the
design, meaning the protocol for selecting the sample from the frame. The diagram
shows this selection process as a chance mechanism, represented by draws from an
urn filled with indistinguishable marbles. On the right side of the diagram, the collec‐
tion of marbles constitutes our sample (the data we got).

Figure 17-1. Diagram of the data generation process

We have kept the diagram simple by considering measurements for just one feature.
Below the urn in the diagram is the population histogram for that feature. The popula‐
tion histogram represents the distribution of values across the entire population. On
the far right, the empirical histogram shows the distribution of values for our actual
sample. Notice that these two distributions are similar in shape. This happens when
our sampling mechanism produces representative samples.

We are often interested in a summary of the sample measurements, such as the mean,
median, slope from a simple linear model, and so on. Typically, this summary statistic
is an estimate for a population parameter, such as the population mean or median.
The population parameter is shown as θ∗ on the left of the diagram; on the right, the
summary statistic, calculated from the sample, is θ̂ .

The chance mechanism that generates our sample might well produce a different set
of data if we were to conduct our investigation over again. But if the protocols are
well designed, we expect the sample to still resemble the population. In other words,
we can infer the population parameter from the summary statistic calculated from
the sample. The sampling distribution in the middle of the diagram is a probability dis‐
tribution for the statistic. It shows the possible values that the statistic might take for
different samples and their chances. In Chapter 3, we used simulation to estimate the

432 | Chapter 17: Theory for Inference and Prediction

sampling distribution in several examples. In this chapter, we revisit these and other
examples from earlier chapters to formalize the analyses.

One last point about these three histograms: as introduced in Chapter 10, the rectan‐
gles provide the fraction of observations in any bin. In the case of the population his‐
togram, this is the fraction of the entire population; for the empirical histogram, the
area represents the fraction in the sample; and for the sampling distribution, the area
represents the chance the data generation mechanism would produce a sample statis‐
tic in this bin.

Finally, we typically don’t know the population distribution or parameter, and we try
to infer the parameter or predict values for unseen units in the population. At other
times, a conjecture about the population can be tested using the sample. Testing is the
topic of the next section.

Basics of Hypothesis Testing
In our experience, hypothesis testing is one of the more challenging areas of data sci‐
ence—challenging to learn and challenging to apply. This is not necessarily because
hypothesis testing is deeply technical; rather, hypothesis testing can be counterintui‐
tive because it makes use of contradictions. As the name suggests, we often start
hypothesis testing with a hypothesis: a statement about the world that we would like
to verify.

In an ideal world, we would directly prove our hypothesis is true. Unfortunately, we
often don’t have access to all the information needed to determine the truth. For
example, we might hypothesize that a new vaccine is effective, but contemporary
medicine doesn’t yet understand all the details of the biology that govern vaccine effi‐
cacy. Instead, we turn to the tools of probability, random sampling, and data design.

One reason hypothesis testing can be confusing is that it’s a lot like “proof by contra‐
diction,” where we assume the opposite of our hypothesis is true and try to show that
the data we observe is inconsistent with that assumption. We approach the problem
this way because often, something can be true for many reasons, but we only need a
single example to contradict an assumption. We call this “opposite hypothesis” the
null hypothesis and our original hypothesis the alternative hypothesis.

To make matters a bit more confusing, the tools of probability don’t directly prove or
disprove things. Instead, they tell us how likely or unlikely something we observe is
under assumptions, like the assumptions of the null hypothesis. That’s why it’s so
important to design the data collection well.

Recall the randomized clinical trial of the J&J vaccine (Chapter 3), where 43,738 peo‐
ple enrolled in the trial were randomly split into two equal groups. The treatment
group was given the vaccine and the control was given a fake vaccine, called a

Basics of Hypothesis Testing | 433

placebo. This random assignment created two groups that were similar in every way
except for the vaccine.

In this trial, 117 people in the treatment group fell ill and 351 in the control group got
sick. Since we want to provide convincing evidence that the vaccine works, we start
with a null hypothesis that it doesn’t work, meaning it was just by chance that the ran‐
dom assignment led to so few illnesses in the treatment group. We can then use prob‐
ability to calculate the chance of observing so few sick people in the treatment group.
The probability calculations are based on the urn that has 43,738 marbles in it, with
468 marked 1 to denote a sick person. We then found that the probability of at most
117 marbles being drawn in 21,869 draws with replacement from the urn was nearly
zero. We take this as evidence to reject the null hypothesis in favor of the alternative
hypothesis that the vaccine works. Because the J&J experiment was well designed, a
rejection of the null leads us to conclude that the vaccine works. In other words, the
truth of the hypothesis is left to us and how willing we are to be potentially wrong.

In the rest of this section, we go over the four basic steps of a hypothesis test. We then
provide two examples that continue two of the examples from Chapter 3, and delve
deeper into the formalities for testing.

There are four basic steps to hypothesis testing:

Step 1: Set up
You have your data, and you want to test whether a particular model is reasona‐
bly consistent with the data. So you specify a statistic, θ̂ , such as the sample aver‐
age, fraction of zeros in a sample, or fitted regression coefficient, with the goal of
comparing your data’s statistic to what might have been produced under the
model.

Step 2: Model
You spell out the model that you want to test in the form of a data generation
mechanism, along with any specific assumptions about the population. This
model typically includes specifying θ∗, which may be the population mean, the
proportion of zeros, or a regression coefficient. The sampling distribution of the
statistic under this model is referred to as the null distribution, and the model
itself is called the null hypothesis.

Step 3: Compute
How likely, according to the null model in step 2, is it to get data (and the result‐
ing statistic) at least as extreme as what you actually got in step 1? In formal
inference, this probability is called the p-value. To approximate the p-value, we
often use the computer to generate a large number of repeated random trials
using the assumptions in the model and find the fraction of samples that give a
value of the statistic at least as extreme as our observed value. Other times, we
can instead use mathematical theory to find the p-value.

434 | Chapter 17: Theory for Inference and Prediction

Step 4: Interpret
The p-value is used as a measure of surprise. If the model that you spelled out in
step 2 is believable, how surprised should you be to get the data (and summary
statistic) that you actually got? A moderately sized p-value means that the
observed statistic is pretty much what you would expect to get for data generated
by the null model. A tiny p-value raises doubts about the null model. In other
words, if the model is correct (or approximately correct), then it would be very
unusual to get such an extreme value of the test statistic from data generated by
the model. In this case, either the null model is wrong or a very unlikely outcome
has occurred. Statistical logic says to conclude that the pattern is real, that it is
more than just coincidence. Then it’s up to you to explain why the data genera‐
tion process led to such an unusual value. This is when a careful consideration of
the scope is important.

Let’s demonstrate these steps in the testing process with a couple of examples.

Example: A Rank Test to Compare Productivity of
Wikipedia Contributors
Recall the Wikipedia example from Chapter 2, where a randomly selected set of 200
contributors were chosen from among the top 1% of contributors who were active in
the past 30 days on the English-language Wikipedia and who had never received an
award. These 200 contributors were divided at random into two groups of 100. The
contributors in one group, the treatment group, were each given an informal award,
while no one in the other group was given one. All 200 contributors were followed
for 90 days and their activity on Wikipedia recorded.

It has been conjectured that informal awards have a reinforcing effect on volunteer
work, and this experiment was designed to formally study this conjecture. We carry
out a hypothesis test based on the rankings of the data.

First, we read the data into a dataframe:

wiki = pd.read_csv("data/Wikipedia.csv")
wiki.shape

(200, 2)

wiki.describe()[3:]

 experiment postproductivity
min 0.0 0.0
25% 0.0 57.5
50% 0.5 250.5
75% 1.0 608.0
max 1.0 2344.0

Basics of Hypothesis Testing | 435

The dataframe has 200 rows, one for each contributor. The feature experiment is
either 0 or 1, depending on whether the contributor was in the control or treatment
group, respectively, and postproductivity is a count of the edits made by the con‐
tributor in the 90 days after the awards were made. The gap between the quartiles
(lower, middle, and upper) suggests the distribution of productivity is skewed. We
make a histogram to confirm:

px.histogram(
 wiki, x='postproductivity', nbins=50,
 labels={'postproductivity': 'Number of actions in 90 days post award'},
 width=350, height=250)

Indeed, the histogram of post-award productivity is highly skewed, with a spike near
zero. The skewness suggests a statistic based on the ordering of the values from the
two samples.

To compute our statistic, we order all productivity values (from both groups) from
smallest to largest. The smallest value has rank 1, the second smallest rank 2, and so
on, up to the largest value, which has a rank of 200. We use these ranks to compute
our statistic, θ̂ , which is the average rank of the treatment group. We chose this statis‐
tic because it is insensitive to highly skewed distributions. For example, whether the
largest value is 700 or 700,000, it still receives the same rank, namely 200. If the infor‐
mal award incentivizes contributors, then we would expect the average rank of the
treatment group to be typically higher than the control.

The null model assumes that an informal award has no effect on productivity, and any
difference observed between the treatment and control groups is due to the chance
process in assigning contributors to groups. The null hypothesis is set up for the sta‐
tus quo to be rejected; that is, we hope to find a surprise in assuming no effect.

The null hypothesis can be represented by 100 draws from an urn with 200 marbles,
marked 1, 2, 3, …, 200. In this case, the average rank would be (1 + 200)/2 = 100.5.

436 | Chapter 17: Theory for Inference and Prediction

We use the rankdata method in scipy.stats to rank the 200 values and compute the
sum of ranks in the treatment group:

from scipy.stats import rankdata
ranks = rankdata(wiki['postproductivity'], 'average')

Let’s confirm that the average rank of the 200 values is 100.5:

np.average(ranks)

100.5

And find the average rank of the 100 productivity scores in the treatment group:

observed = np.average(ranks[100:])
observed

113.68

The average rank in the treatment group is higher than expected, but we want to fig‐
ure out if it is an unusually high value. We can use simulation to find the sampling
distribution for this statistic to see if 113 is a routine value or a surprising one.

To carry out this simulation, we set up the urn as the ranks array from the data. Shuf‐
fling the 200 values in the array and taking the first 100 represents a randomly sam‐
pled treatment group. We write a function to shuffle the array of ranks and find the
average of the first 100.

rng = np.random.default_rng(42)
def rank_avg(ranks, n):
 rng.shuffle(ranks)
 return np.average(ranks[n:])

Our simulation mixes the marbles in the urn, draws 100 times, computes the average
rank for the 100 draws, and repeats this 100,000 times.

rank_avg_simulation = [rank_avg(ranks, 100) for _ in range(100_000)]

Here is a histogram of the simulated averages:

Basics of Hypothesis Testing | 437

As we expected, the sampling distribution of the average rank is centered on 100
(100.5 actually) and is bell-shaped. The center of this distribution reflects the assump‐
tions of the treatment having no effect. Our observed statistic is well outside the typi‐
cal range of simulated average ranks, and we use this simulated sampling distribution
to find the approximate p-value for observing a statistic at least as big as ours:

np.mean(rank_avg_simulation > observed)

0.00058

This is a big surprise. Under the null, the chance of seeing an average rank at least as
large as ours is about 5 in 10,000.

This test raises doubt about the null model. Statistical logic has us conclude that the
pattern is real. How do we interpret this? The experiment was well designed. The 200
contributors were selected at random from the top 1%, and then they were divided at
random into two groups. These chance processes say that we can rely on the sample
of 200 being representative of top contributors, and on the treatment and control
groups being similar to each other in every way except for the application of the treat‐
ment (the award). Given the careful design, we conclude that informal awards have a
positive effect on productivity for top contributors.

Earlier, we implemented a simulation to find the p-value for our observed statistic. In
practice, rank tests are commonly used and made available in most statistical
software:

from scipy.stats import ranksums

ranksums(x=wiki.loc[wiki.experiment == 1, 'postproductivity'],
 y=wiki.loc[wiki.experiment == 0, 'postproductivity'])

RanksumsResult(statistic=3.220386553232206, pvalue=0.0012801785007519996)

438 | Chapter 17: Theory for Inference and Prediction

The p-value here is twice the p-value we computed because we considered only val‐
ues greater than the observed, whereas the ranksums test computed the the p-value
for both sides of the distribution. In our example, we are only interested in an
increase in productivity, and so use a one-sided p-value, which is half the reported
value (0.0006) and close to our simulated value.

This somewhat unusual test statistic that uses ranks rather than the actual data values
was developed in the 1950s and 1960s, before today’s era of powerful laptop comput‐
ers. The mathematical properties of rank statistics is well developed and the sampling
distribution is well behaved (it is symmetric and shaped like the bell curve even for
small datasets). Rank tests remain popular for A/B testing where samples tend to be
highly skewed, and it is common to carry out many, many tests where p-values can be
computed rapidly from the normal distribution.

The next example revisits the vaccine efficacy example from Chapter 3. There, we
encountered a hypothesis test without actually calling it that.

Example: A Test of Proportions for Vaccine Efficacy
The approval of a vaccine is subject to stricter requirements than the simple test we
performed earlier where we compared the disease counts in the treatment group to
those of the control group. The CDC requires stronger evidence of success based on a
comparison of the proportion of sick individuals in each group. To explain, we
express the sample proportion of sick people in the control and treatment groups as
p̂C and p̂T, respectively, and use these proportions to compute vaccine efficacy:

θ̂ =
p̂C − p̂T

p̂C
= 1 −

p̂T

p̂C

The observed value of vaccine efficacy in the J&J trial is:

1 − 117/21869
351/21869 = 1 − 117

351 = 0.667

If the treatment doesn’t work, the efficacy would be near 0. The CDC sets a standard
of 50% for vaccine efficacy, meaning that the efficacy has to exceed 50% to be
approved for distribution. In this situation, the null model assumes that vaccine effi‐
cacy is 50% (θ∗ = 0.5), and any difference of the observed value from the expected is
due to the chance process in assigning people to groups. Again, we set the null
hypothesis to be the status quo that the vaccine isn’t effective enough to warrant
approval, and we hope to find a surprise and reject the null.

Basics of Hypothesis Testing | 439

With a little algebra, the null model 0.5 = 1 − pT/ pC reduces to pT = 0.5pC. That is,
the null hypothesis implies that the proportion of ill people among those receiving
the treatment is at most half that of the control. Notice that the actual values for the
two risks (pT and pC) are not assumed in the null. That is, the model doesn’t assume
the treatment doesn’t work, but rather, that its efficacy is no larger than 0.5.

Our urn model in this situation is a bit different from what we set up in Chapter 3.
The urn still has 43,738 marbles in it, corresponding to the enrollees in the experi‐
ment. But now each marble has two numbers on it, which for simplicity appear in a
pair, such as (0, 1). The number on the left is the response if the person receives the
treatment, and the number on the right corresponds to the response to no treatment
(the control). As usual, 1 means they become ill and 0 means they stay healthy.

The null model assumes that the proportion of ones on the left of the pair is half the
proportion on the right. Since we don’t know these two proportions, we can use the
data to estimate them. There are three types of marbles in the urn (0, 0), (0, 1), and
(1, 1). We assume that (1, 0), which corresponds to a person getting ill under treat‐
ment and not under control, is not possible. We observed 351 people getting sick in
control and 117 in treatment. With the assumption that the treatment rate of illness is
half that of the control, we can tray a scenario for the makeup of the urn. For exam‐
ple, we can study the case where 117 people in treatment didn’t get sick but would
have if they were in the control group, so combined, all 585 people (351 + 117 + 117)
would get the virus if they didn’t receive the vaccine and half of them would not get
the virus if they received treatment. Table 17-1 shows these counts.

Table 17-1. Vaccine trial urn

Label Count
(0, 0) 43,152

(0, 1) 293

(1, 0) 0

(1, 1) 293

Total 43,738

We can use these counts to carry out a simulation of the clinical trial and compute
vaccine efficacy. As shown in Chapter 3, the multivariate hypergeometric function
simulates draws from an urn when there are more than two kinds of marbles. We set
up this urn and sampling process:

N = 43738
n_samp = 21869
N_groups = np.array([293, 293, (N - 586)])

from scipy.stats import multivariate_hypergeom

440 | Chapter 17: Theory for Inference and Prediction

def vacc_eff(N_groups, n_samp):
 treat = multivariate_hypergeom.rvs(N_groups, n_samp)
 ill_t = treat[1]
 ill_c = N_groups[0] - treat[0] + N_groups[1] - treat[1]
 return (ill_c - ill_t) / ill_c

Now we can simulate the clinical trial 100,000 times and calculate the vaccine efficacy
for each trial:

np.random.seed(42)
sim_vacc_eff = np.array([vacc_eff(N_groups, n_samp) for _ in range(100_000)])

px.histogram(x=sim_vacc_eff, nbins=50,
 labels=dict(x='Simulated vaccine efficacy'),
 width=350, height=250)

The sampling distribution is centered at 0.5, which agrees with our model assump‐
tions. We see that 0.667 is far out in the tail of this distribution:

np.mean(sim_vacc_eff > 0.667)

1e-05

Only a tiny handful of the 100,000 simulations have a vaccine efficacy as large as the
observed 0.667. This is a rare event, and that’s why the CDC approved the Johnson &
Johnson vaccine for distribution.

In this example of hypothesis testing, we were not able to completely specify the
model, and we had to provide approximate values for pC and pT based on our
observed values of p̂C and p̂T. At times, the null model isn’t entirely specified, and we
must rely on the data to set up the model. The next section introduces a general
approach, called the bootstrap, to approximate the model using the data.

Basics of Hypothesis Testing | 441

Bootstrapping for Inference
In many hypothesis tests the assumptions of the null hypothesis lead to a complete
specification of a hypothetical population and data design (see Figure 17-1), and we
use this specification to simulate the sampling distribution of a statistic. For example,
the rank test for the Wikipedia experiment led us to sample the integers 1, …, 200,
which we easily simulated. Unfortunately, we can’t always specify the population and
model completely. To remedy the situation, we substitute the data for the population.
This substitution is at the heart of the notion of the bootstrap. Figure 17-2 updates
Figure 17-1 to reflect this idea; here the population distribution is replaced by the
empirical distribution to create what is called the bootstrap population.

Figure 17-2. Diagram of bootstrapping the data generation process

The rationale for the bootstrap goes like this:

• Your sample looks like the population because it is a representative sample, so we
replace the population with the sample and call it the bootstrap population.

• Use the same data generation process that produced the original sample to get a
new sample, which is called a bootstrap sample, to reflect the change in the popu‐
lation. Calculate the statistic on the bootstrap sample in the same manner as
before and call it the bootstrap statistic. The bootstrap sampling distribution of the
bootstrap statistic should be similar in shape and spread to the true sampling dis‐
tribution of the statistic.

• Simulate the data generation process many times, using the bootstrap population,
to get bootstrap samples and their bootstrap statistics. The distribution of the

442 | Chapter 17: Theory for Inference and Prediction

simulated bootstrap statistics approximates the bootstrap sampling distribution
of the bootstrap statistic, which itself approximates the original sampling
distribution.

Take a close look at Figure 17-2 and compare it to Figure 17-1. Essentially, the boot‐
strap simulation involves two approximations: the original sample approximates the
population, and the simulation approximates the sampling distribution. We have
been using the second approximation in our examples so far; the approximation of
the population by the sample is the core notion behind bootstrapping. Notice that in
Figure 17-2, the distribution of the bootstrap population (on the left) looks like the
original sample histogram; the sampling distribution (in the middle) is still a proba‐
bility distribution based on the same data generation process as in the original study,
but it now uses the bootstrap population; and the sample distribution (on the right) is
a histogram of one sample taken from the bootstrap population.

You might be wondering how to take a simple random sample from your bootstrap
population and not wind up with the exact same sample each time. After all, if your
sample has 100 units in it and you use it as your bootstrap population, then 100 draws
from the bootstrap population without replacement will take all of the units and give
you the same bootstrap sample every time. There are two approaches to solving this
problem:

• When sampling from the bootstrap population, draw units from the bootstrap
population with replacement. Essentially, if the original population is very large,
then there is little difference between sampling with and without replacement.
This is the more common approach by far.

• “Blow up the sample” to be the same size as the original population. That is, tally
the fraction of each unique value in the sample, and add units to the bootstrap
population so that it is the same size as the original population, while maintain‐
ing the proportions. For example, if the sample is size 30 and 1/3 of the sample
values are 0, then a bootstrap population of 750 should include 250 zeros. Once
you have this bootstrap population, use the original data generation procedure to
take the bootstrap samples.

The example of vaccine efficacy used a bootstrap-like process, called the parameter‐
ized bootstrap. Our null model specified 0-1 urns, but we didn’t know how many 0s
and 1s to put in the urn. We used the sample to determine the proportions of 0s and
1s; that is, the sample specified the parameters of the multivariate hypergeometric.
Next, we use the example of calibrating air quality monitors to show how bootstrap‐
ping could be used to test a hypothesis.

Bootstrapping for Inference | 443

It’s a common mistake to think that the center of the bootstrap
sampling distribution is the same as the center of the true sampling
distribution. If the mean of the sample is not 0, then the mean of
the bootstrap population is also not 0. That’s why we use the spread
of the bootstrap distribution, and not its center, in hypothesis test‐
ing. The next example shows how we might use the bootstrap to
test a hypothesis.

The case study on calibrating air quality monitors (see Chapter 12) fit a model to
adjust the measurements from an inexpensive monitor to more accurately reflect true
air quality. This adjustment included a term in the model related to humidity. The
fitted coefficient was about 0.2 so that on days of high humidity the measurement is
adjusted upward more than on days of low humidity. However, this coefficient is
close to 0, and we might wonder whether including humidity in the model is really
needed. In other words, we want to test the hypothesis that the coefficient for humid‐
ity in the linear model is 0. Unfortunately, we can’t fully specify the model, because it
is based on measurements taken over a particular time period from a set of air moni‐
tors (both PurpleAir and those maintained by the EPA). This is where the bootstrap
can help.

Our model makes the assumption that the air quality measurements taken resemble
the population of measurements. Note that weather conditions, the time of year, and
the location of the monitors make this statement a bit hand-wavy; what we mean here
is that the measurements are similar to others taken under the same conditions as
those when the original measurements were taken. Also, since we can imagine a vir‐
tually infinite supply of air quality measurements, we think of the procedure for gen‐
erating measurements as draws with replacement from the urn. Recall that in
Chapter 2 we modeled the urn as repeated draws with replacement from an urn of
measurement errors. This situation is a bit different because we are also including the
other factors mentioned already (weather, season, location).

Our model is focused on the coefficient for humidity in the linear model:

PA ≈ θ0 + θ1AQ + θ2RH

Here, PA refers to the PurpleAir PM2.5 measurement, RH is the relative humidity,
and AQ stands for the more exact measurement of PM2.5 made by the more accurate
AQS monitors. The null hypothesis is θ2 = 0; that is, the null model is the simpler
model:

PA ≈ θ0 + θ1AQ

To estimate θ2, we use the linear model fitting procedure from Chapter 15.

444 | Chapter 17: Theory for Inference and Prediction

Our bootstrap population consists of the measurements from Georgia that we used in
Chapter 15. Now we sample rows from the dataframe (which is equivalent to our urn)
with replacement using the chance mechanism randint. This function takes random
samples with replacement from a set of integers. We use the random sample of indi‐
ces to create the bootstrap sample from the dataframe. Then we fit the linear model
and get the coefficient for humidity (our bootstrap statistic). The following
boot_stat function performs this simulation process:

from scipy.stats import randint

def boot_stat(X, y):
 n = len(X)
 bootstrap_indexes = randint.rvs(low=0, high=(n - 1), size=n)
 theta2 = (
 LinearRegression()
 .fit(X.iloc[bootstrap_indexes, :], y.iloc[bootstrap_indexes])
 .coef_[1]
)
 return theta2

We set up the design matrix and the outcome variable and check our boot_stat func‐
tion once to test it:

X = GA[['pm25aqs', 'rh']]
y = GA['pm25pa']

boot_stat(X, y)

0.21572251745549495

When we repeat this process 10,000 times, we get an approximation to the bootstrap
sampling distribution of the bootstrap statistic (the fitted humidity coefficient):

np.random.seed(42)
boot_theta_hat = np.array([boot_stat(X, y) for _ in range(10_000)])

We are interested in the shape and spread of this bootstrap sampling distribution (we
know that the center will be close to the original coefficient of 0.21):

px.histogram(x=boot_theta_hat, nbins=50,
 labels=dict(x='Bootstrapped humidity coefficient'),
 width=350, height=250)

Bootstrapping for Inference | 445

By design, the center of the bootstrap sampling distribution will be near θ̂ because
the bootstrap population consists of the observed data. So, rather than compute the
chance of a value at least as large as the observed statistic, we find the chance of a
value at least as small as 0. The hypothesized value of 0 is far from the sampling
distribution.

None of the 10,000 simulated regression coefficients are as small as the hypothesized
coefficient. Statistical logic leads us to reject the null hypothesis that we do not need
to adjust the model for humidity.

The form of the hypothesis test we performed here looks different than the earlier
tests because the sampling distribution of the statistic is not centered on the null. That
is because we are using the bootstrap to create the sampling distribution. We are, in
effect, using a confidence interval for the coefficient to test the hypothesis. In the next
section we introduce interval estimates more generally, including those based on the
bootstrap, and we connect the concepts of hypothesis testing and confidence
intervals.

Basics of Confidence Intervals
We have seen that modeling leads to estimates, such as the typical time that a bus is
late (Chapter 4), a humidity adjustment to an air quality measurement (Chapter 15),
and an estimate of vaccine efficacy (Chapter 2). These examples are point estimates
for unknown values, called parameters: the median lateness of the bus is 0.74 minutes;
the humidity adjustment to air quality is 0.21 PM2.5 per humidity percentage point;
and the ratio of COVID infection rates in vaccine efficacy is 0.67. However, a differ‐
ent sample would have produced a different estimate. Simply providing a point esti‐
mate doesn’t give a sense of the estimate’s precision. Alternatively, an interval estimate
can reflect the estimate’s accuracy. These intervals typically take one of two forms:

446 | Chapter 17: Theory for Inference and Prediction

• A bootstrap confidence interval created from the percentiles of the bootstrap sam‐
pling distribution

• A normal confidence interval constructed using the standard error (SE) of the
sampling distribution and additional assumptions about the distribution having
the shape of a normal curve

We describe these two types of intervals and then give an example. Recall that the
sampling distribution (see Figure 17-1) is a probability distribution that reflects the
chance of observing different values of θ̂ . Confidence intervals are constructed from
the spread of the sampling distribution of θ̂ , so the endpoints of the interval are ran‐
dom because they are based on θ̂ . These intervals are designed so that 95% of the
time the interval covers θ∗.

As its name suggests, the percentile-based bootstrap confidence interval is created
from the percentiles of the bootstrap sampling distribution. Specifically, we compute
the quantiles of the sampling distribution of θ̂ B, where θ̂ B is the bootstrapped statis‐
tic. For a 95th percentile interval, we identify the 2.5 and 97.5 quantiles, called q2.5, B
and q97.5, B, respectively, where 95% of the time the bootstrapped statistic is in the
interval:

q2.5, B ≤ θ̂ B ≤ q97.5, B

This bootstrap percentile confidence interval is considered a quick-and-dirty inter‐
val. There are many alternatives that adjust for bias, take into consideration the shape
of the distribution, and are better suited for small samples.

The percentile confidence interval does not rely on the sampling distribution having
a particular shape or the center of the distribution being θ∗. In contrast, the normal
confidence interval often doesn’t require bootstrapping to compute, but it does make
additional assumptions about the shape of the sampling distribution of θ̂ .

We use the normal confidence interval when the sampling distribution is well
approximated by a normal curve. For a normal probability distribution, with center μ
and spread σ, there is a 95% chance that a random value from this distribution is in
the interval μ ± 1.96σ. Since the center of the sampling distribution is typically θ∗,
the chance is 95% that for a randomly generated θ̂ :

|θ̂ − θ∗ | ≤ 1.96SE(θ̂)

Basics of Confidence Intervals | 447

where SE(θ̂) is the spread of the sampling distribution of θ̂ . We use this inequality to
make a 95% confidence interval for θ∗:

[θ̂ − 1.96SE(θ̂), θ̂ + 1.96SE(θ̂)]

Confidence intervals of other sizes can be formed with different multiples of SE(θ̂),
all based on the normal curve. For example, a 99% confidence interval is ±2.58SE,
and a one-sided upper 95% confidence interval is [θ̂ − 1.64SE(θ̂), ∞].

The SD of a parameter estimate is often called the standard error,
or SE, to distinguish it from the SD of a sample, population, or one
draw from an urn. In this book, we don’t differentiate between
them. We call them SDs.

We provide an example of each type of interval next.

Earlier in this chapter we tested the hypothesis that the coefficient for humidity in a
linear model for air quality is 0. The fitted coefficient for these data was 0.21. Since
the null model did not completely specify the data generation mechanism, we resor‐
ted to bootstrapping. That is, we used the data as the population, took a sample of
11,226 records with replacement from the bootstrap population, and fitted the model
to find the bootstrap sample coefficient for humidity. Our simulation repeated this
process 10,000 times to get an approximate bootstrap sampling distribution.

We can use the percentiles of this bootstrap sampling distribution to create a 99%
confidence interval for θ∗. To do this, we find the quantiles, q0.5 and q99.5, of the boot‐
strap sampling distribution:

q_995 = np.percentile(boot_theta_hat, 99.5, method='lower')
q_005 = np.percentile(boot_theta_hat, 0.05, method='lower')

print(f"Lower 0.05th percentile: {q_005:.3f}")
print(f"Upper 99.5th percentile: {q_995:.3f}")

Lower 0.05th percentile: 0.099
Upper 99.5th percentile: 0.260

Alternatively, since the histogram of the sampling distribution looks roughly normal
in shape, we can create a 99% confidence interval based on the normal distribution.
First, we find the standard error of θ̂ , which is just the standard deviation of the sam‐
pling distribution of θ̂ :

standard_error = np.std(boot_theta_hat)
standard_error

448 | Chapter 17: Theory for Inference and Prediction

0.02653498609330345

Then, a 99% confidence interval for θ∗ is 2.58 SEs away from the observed θ̂ in either
direction:

print(f"Lower 0.05th endpoint: {theta2_hat - (2.58 * standard_error):.3f}")
print(f"Upper 99.5th endpoint: {theta2_hat + (2.58 * standard_error):.3f}")

Lower 0.05th endpoint: 0.138
Upper 99.5th endpoint: 0.275

These two intervals (bootstrap percentile and normal) are close but clearly not identi‐
cal. We might expect this given the slight asymmetry in the bootstrapped sampling
distribution.

There are other versions of the normal-based confidence interval that reflect the vari‐
ability in estimating the standard error of the sampling distribution using the SD of
the data. And there are still other confidence intervals for statistics that are percen‐
tiles, rather than averages. (Also note that for permutation tests, the bootstrap tends
not to be as accurate as normal approximations.)

Confidence intervals can be easily misinterpreted as the chance
that the parameter θ∗ is in the interval. However, the confidence
interval is created from one realization of the sampling distribu‐
tion. The sampling distribution gives us a different probability
statement; 95% of the time, an interval constructed in this way will
contain θ∗. Unfortunately, we don’t know whether this particular
time is one of those that happens 95 times in 100 or not. That is
why the term confidence is used rather than probability or chance,
and we say that we are 95% confident that the parameter is in our
interval.

Confidence intervals and hypothesis tests are related in the following way. If, say, a
95% confidence interval contains the hypothesized value θ∗, then the p-value for the
test is less than 5%. That is, we can invert a confidence interval to create a hypothesis
test. We used this technique in the previous section when we carried out the test that
the coefficient for humidity in the air quality model is 0. In this section, we have cre‐
ated a 99% confidence interval for the coefficient (based on the bootstrap percentiles),
and since 0 does not belong to the interval, the p-value is less than 1% and statistical
logic would lead us to conclude that the coefficient is not 0.

Another kind of interval estimate is the prediction interval. Prediction intervals focus
on the variation in observations rather than the variation in an estimator. We explore
these next.

Basics of Confidence Intervals | 449

Basics of Prediction Intervals
Confidence intervals convey the accuracy of an estimator, but sometimes we want the
accuracy of a prediction for a future observation. For example, someone might say:
half the time my bus arrives three-quarters of a minute late at most, but how late
might it get? As another example, the California Department of Fish and Wildlife sets
the minimum catch size for Dungeness crabs at 146 mm, and a recreational fishing
company might wonder how much bigger than 146 mm their customer’s catch might
be when they bring them fishing. And for another example, a vet estimates the weight
of a donkey to be 169 kg based on its length and girth and uses this estimate to
administer medication. For the donkey’s safety, the vet is keen to know how different
the donkey’s real weight might be from this estimate.

What these examples have in common is an interest in the prediction of a future
observation and the desire to quantify how far that future observation might be from
this prediction. Just like with confidence intervals, we compute the statistic (the esti‐
mator) and use it in making the prediction, but now we’re interested in typical devia‐
tions of future observations from the prediction. In the following sections, we work
through examples of prediction intervals based on quantiles, standard deviations, and
those conditional on covariates. Along the way, we provide additional information
about the typical variation of observations about a prediction.

Example: Predicting Bus Lateness
Chapter 4 models the lateness of a Seattle bus in arriving at a particular stop. We
observed that the distribution was highly skewed and chose to estimate the typical
lateness by the median, which was 0.74 minutes. We reproduce the sample histogram
from that chapter here:

times = pd.read_csv("data/seattle_bus_times_NC.csv")
fig = px.histogram(times, x="minutes_late", width=350, height=250)
fig.update_xaxes(range=[-12, 60], title_text="Minutes late")
fig

450 | Chapter 17: Theory for Inference and Prediction

The prediction problem addresses how late a bus might be. While the median is
informative, it doesn’t provide information about the skewness of the distribution.
That is, we don’t know how late the bus might be. The 75th percentile, or even the
95th percentile, would add useful information to consider. We compute those percen‐
tiles here:

median: 0.74 mins late
75th percentile: 3.78 mins late
95th percentile: 13.02 mins late

From these statistics, we learn that while more than half the time the bus is not even a
minute late, one-quarter of the time it’s almost four minutes late, and with some regu‐
larity it can happen that the bus is nearly 15 minutes late. These three values together
help us make plans.

Example: Predicting Crab Size
Fishing for Dungeness crabs is highly regulated, including limiting the shell size to
146 mm in width for crabs caught for recreation. To better understand the distribu‐
tion of shell size of Dungeness crabs, the California Department of Fish and Wildlife
worked with commercial crab fishers from Northern California and Southern Ore‐
gon to capture, measure, and release crabs. Here is a histogram of crab shell sizes for
the approximately 450 crabs caught:

Basics of Prediction Intervals | 451

The distribution is somewhat skewed left, but the average and standard deviations are
reasonable summary statistics of the distribution:

crabs['shell'].describe()[:3]

count 452.00
mean 131.53
std 11.07
Name: shell, dtype: float64

The average, 132 mm, is a good prediction for the typical size of a crab. However, it
lacks information about how far an individual crab may vary from the average. The
standard deviation can fill in this gap.

In addition to the variability of individual observations about the center of the distri‐
bution, we also take into account the variability in our estimate of the mean shell size.
We can use the bootstrap to estimate this variability, or we can use probability theory
(we do this in the next section) to show that the standard deviation of the estimator is
SD(pop)/ n. We also show, in the next section, that these two sources of variation
combine as follows:

SD(pop)2 + SD(pop)2

n = SD(pop) 1 + 1
n

We substitute SD(sample) for SD(pop) and apply this formula to our crabs:

np.std(crabs['shell']) * np.sqrt(1 + 1/len(crabs))

11.073329460297957

We see that including the SE of the sample average essentially doesn’t change the pre‐
diction error because the sample is so large. We conclude that crabs routinely differ
from the typical size of 132 mm by 11 to 22 mm. This information is helpful in

452 | Chapter 17: Theory for Inference and Prediction

developing policies around crab fishing to maintain the health of the crab population
and to set expectations for the recreational fisher.

Example: Predicting the Incremental Growth of a Crab
After Dungeness crabs mature, they continue to grow by casting off their shell and
building a new, larger one to grow into each year; this process is called molting. The
California Department of Fish and Wildlife wanted a better understanding of crab
growth so that it could set better limits on fishing that would protect the crab popula‐
tion. The crabs caught in the study mentioned in the previous example were about to
molt, and in addition to their size, the change in shell size from before to after molt‐
ing was also recorded:

crabs.corr()

 shell inc
shell 1.0 -0.6
inc -0.6 1.0

These two measurements are negatively correlated, meaning that the larger the crab,
the less they grow when they molt. We plot the growth increment against the shell
size to determine whether the relationship between these variables is roughly linear:

px.scatter(crabs, y='inc', x= 'shell', width=350, height=250,
 labels=dict(shell='Dungeness crab shell width (mm)',
 inc='Growth (mm)'))

The relationship appears linear, and we can fit a simple linear model to explain the
growth increment by the pre-molt size of the shell. For this example, we use the

Basics of Prediction Intervals | 453

statsmodels library, which provides prediction intervals with get_prediction. We
first set up the design matrix and response variable, and then we use least squares to
fit the model:

import statsmodels.api as sm

X = sm.add_constant(crabs[['shell']])
y = crabs['inc']

inc_model = sm.OLS(y, X).fit()

print(f"Increment estimate = {inc_model.params[0]:0.2f} + ",
 f"{inc_model.params[1]:0.2f} x Shell Width")

Increment estimate = 29.80 + -0.12 x Shell Width

When modeling, we create prediction intervals for given values of the explanatory
variable. For example, if a newly caught crab is 120 mm across, then we use our fitted
model to predict its shell’s growth.

As in the previous example, the variability of our prediction for an individual obser‐
vation includes the variability in our estimate of the crab’s growth and the crab-to-
crab variation in shell size. Again, we can use the bootstrap to estimate this variation,
or we can use probability theory to show that these two sources of variation combine
as follows:

SD(e) 1 + x0(X⊤X)−1x0
⊤

Here X is the design matrix that consists of the original data, e is the n × 1 column
vector of residuals from the regression, and x0 is the 1 × (p + 1) row vector of features
for the new observation (in this example, these are 1, 120):

new_data = dict(const=1, shell=120)
new_X = pd.DataFrame(new_data, index=[0])
new_X

 const shell
0 1 120

We use the get_prediction method in statsmodels to find a 95% prediction interval
for a crab with a 120 mm shell:

pred = inc_model.get_prediction(new_X)
pred.summary_frame(alpha=0.05)

 mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
0 15.86 0.12 15.63 16.08 12.48 19.24

454 | Chapter 17: Theory for Inference and Prediction

Here we have both a confidence interval for the average growth increment for a crab
with a 120 mm shell, [15.6, 16.1] and a prediction interval for the growth increment,
[12.5, 19.2]. The prediction interval is quite a bit wider because it takes into account
the variation in individual crabs. This variation is seen in the spread of the points
about the regression line, which we approximate by the SD of the residuals. The cor‐
relation between shell size and growth increment means that the variation in a
growth increment prediction for a particular shell size is smaller than the overall SD
of the growth increment:

print(f"Residual SD: {np.std(inc_model.resid):0.2f}")
print(f"Crab growth SD: {np.std(crabs['inc']):0.2f}")

Residual SD: 1.71
Crab growth SD: 2.14

The intervals provided by get_prediction rely on the normal approximation to the
distribution of growth increment. That’s why the 95% prediction interval endpoints
are roughly twice the residual SD away from the prediction. In the next section, we
dive deeper into these calculations of standard deviations, estimators, and predic‐
tions. We also discuss some of the assumptions that we make in calculating them.

Probability for Inference and Prediction
Hypothesis testing, confidence intervals, and prediction intervals rely on probability
calculations computed from the sampling distribution and the data generation pro‐
cess. These probability frameworks also enable us to run simulation and bootstrap
studies for a hypothetical survey, an experiment, or some other chance process in
order to study its random behavior. For example, we found the sampling distribution
for an average of ranks under the assumption that the treatment in a Wikipedia
experiment was not effective. Using simulation, we quantified the typical deviations
from the expected outcome and the distribution of the possible values for the sum‐
mary statistic. The triptych in Figure 17-1 provided a diagram to guide us in the pro‐
cess; it helped keep straight the differences between the population, probability, and
sample and also showed their connections. In this section, we bring more mathemati‐
cal rigor to these concepts.

We formally introduce the notions of expected value, standard deviation, and ran‐
dom variable, and we connect them to the concepts we have been using in this chap‐
ter for testing hypotheses and making confidence and prediction intervals. We begin
with the specific example from the Wikipedia experiment, and then we generalize.
Along the way, we connect this formalism to the triptych that we have used as our
guide throughout the chapter.

Probability for Inference and Prediction | 455

Formalizing the Theory for Average Rank Statistics
Recall in the Wikipedia experiment that we pooled the post-award productivity val‐
ues from the treatment and control groups and converted them into ranks,
1, 2, 3, …, 200, so the population is simply made up of the integers from 1 to 200.
Figure 17-3 is a diagram that represents this specific situation. Notice that the popula‐
tion distribution is flat and ranges from 1 to 200 (left side of Figure 17-3). Also, the
population summary (called population parameter) we use is the average rank:

θ∗ = Avg(pop) = 1
200Σk = 1

200 k = 100.5

Another relevant summary is the spread about θ∗, defined as the population standard
deviation:

SD(pop) = 1
200Σk = 1

200 (k − θ∗)2 = 1
200Σk = 1

200 (k − 100.5)2 ≈ 57.7

The SD(pop) represents the typical deviation of a rank from the population average.
To calculate SD(pop) for this example takes some mathematical handiwork:

Figure 17-3. Diagram of the data generation process for the Wikipedia experiment; this
is a special case where we know the population

The observed sample consists of the integer ranks of the treatment group; we refer to
these values as k1, k2, …, k100 . The sample distribution appears on the right in
Figure 17-3 (each of the 100 integers appears once).

456 | Chapter 17: Theory for Inference and Prediction

The parallel to the population average is the sample average, which is our statistic of
interest:

Avg(sample) = 1
100Σi = 1

100 ki = k̄ = 113.7

The Avg(sample) is the observed value for θ̂ . Similarly, the spread about
Avg(sample), called the standard deviation of the sample, represents the typical devi‐
ation of a rank in the sample from the sample average:

SD(sample) = 1
100Σi = 1

100 (ki − k̄)2 = 553.

Notice the parallel between the definitions of the sample statistic and the population
parameter in the case where they are averages. The parallel between the two SDs is
also noteworthy.

Next we turn to the data generation process: draw 100 marbles from the urn (with
values 1, 2, …, 200), without replacement, to create the treatment ranks. We represent
the action of drawing the first marble from the urn, and the integer that we get, by the
capital letter Z1. This Z1 is called a random variable. It has a probability distribution
determined by the urn model. That is, we can list all of the values that Z1 might take
and the probability associated with each:

ℙ(Z1 = k) = 1
200 for k = 1, …, 200

In this example, the probability distribution of Z1 is determined by a simple formula
because all of the integers are equally likely to be drawn from the urn.

We often summarize the distribution of a random variable by its expected value and
standard deviation. Like with the population and sample, these two quantities give us
a sense of what to expect as an outcome and how far the actual value might be from
what is expected.

For our example, the expected value of Z1 is simply:

�[Z1] = 1ℙ(Z1 = 1) + 2ℙ(Z1 = 2) +⋯ + 200ℙ(Z1 = 200)

= 1 × 1
200 + 2 × 1

200 +⋯ + 200 × 1
200

= 100.5

Probability for Inference and Prediction | 457

Notice that �[Z1] = θ∗, the population average from the urn. The average value in a
population and the expected value of a random variable that represents one draw at
random from an urn that contains the population are always the same. This is more
easily seen by expressing the population average as an average of the unique values in
the population, weighted by the fraction of units that have that value. The expected
value of a random variable of a draw at random from the population urn uses the
exact same weights because they match the chance of selecting the particular value.

The term expected value can be a bit confusing because it need not
be a possible value of the random variable. For example,
�[Z1] = 100.5, but only integers are possible values for Z1.

Next, the variance of Z1 is defined as follows:

�(Z1) = �[Z1 − �(Z1)]2

= [1 − �(Z1)]2ℙ(Z1 = 1) +⋯ + [200 − �(Z1)]2ℙ(Z1 = 200)

= (1 − 100.5)2 × 1
200 +⋯ + (200 − 100.5)2 × 1

200
= 3333.25

Additionally, we define the standard deviation of Z1 as follows:

SD(Z1) = �(Z1) = 57.7

We again point out that the standard deviation of Z1 matches the SD(pop).

To describe the entire data generation process in Figure 17-3, we also define
Z2, Z3, …, Z100 as the result of the remaining 99 draws from the urn. By symmetry,
these random variables should all have the same probability distribution. That is, for
any k = 1, …, 200:

ℙ(Z1 = k) = ℙ(Z2 = k) = ⋯ = ℙ(Z100 = k) = 1
200

This implies that each Zi has the same expected value, 100.5, and standard deviation,
57.7. However, these random variables are not independent. For example, if you
know that Z1 = 17, then it is not possible for Z2 = 17.

458 | Chapter 17: Theory for Inference and Prediction

To complete the middle portion of Figure 17-3, which involves the sampling distribu‐
tion of θ̂ , we express the average rank statistic as follows:

θ̂ = 1
100Σi = 1

100 Zi

We can use the expected value and SD of Z1 and our knowledge of the data genera‐

tion process to find the expected value and SD of θ̂ . We first find the expected value
of θ̂ :

�(θ̂) = � 1
100Σi = 1

100 Zi

 = 1
100Σi = 1

100 �[Zi]

 = 100.5
 = θ∗

In other words, the expected value of the average of random draws from the popula‐
tion equals the population average. Here we provide formulas for the variance of the
average in terms of the population variance, as well as the SD:

�(θ̂) = � 1
100Σi = 1

100 Zi

 = 200 − 100
100 − 1 ×

�(Zi)
100

 = 16.75

SD(θ̂) = 100
199

SD(Z1)
10

 = 4.1

These computations relied on several properties of expected value and variance of a
random variable and sums of random variables. Next, we provide properties of sums
and averages of random variables that can be used to derive the formulas we just
presented.

General Properties of Random Variables
In general, a random variable represents a numeric outcome of a chance event. In this
book, we use capital letters like X or Y or Z to denote a random variable. The

Probability for Inference and Prediction | 459

probability distribution for X is the specification ℙ(X = x) = px for all values x that
the random variable takes on.

Then, the expected value of X is defined as:

�[X] = ∑
x

xpx

The variance X is defined as:

�(X) = �[(X − �[X])2]
 = ∑

x
[x − �(X)]2px

And the SD(X) is the square root of �(X).

Although random variables can represent quantities that are either
discrete (such as the number of children in a family drawn at ran‐
dom from a population) or continuous (such as the air quality
measured by an air monitor), we address only random variables
with discrete outcomes in this book. Since most measurements are
made to a certain degree of precision, this simplification doesn’t
limit us too much.

Simple formulas provide the expected value, variance, and standard deviation when
we make scale and shift changes to random variables, such as a + bX for constants a
and b:

�(a + bX) = a + b�(X)
�(a + bX) = b2�(X)

SD(a + bX) = |b |SD(X)

To convince yourself that these formulas make sense, think about how a distribution
changes if you add a constant a to each value or scale each value by b. Adding a to
each value would simply shift the distribution, which in turn would shift the expected
value but not change the size of the deviations about the expected value. On the other
hand, scaling the values by, say, 2 would spread the distribution out and essentially
double both the expected value and the deviations from the expected value.

We are also interested in the properties of the sum of two or more random variables.
Let’s consider two random variables, X and Y. Then:

�(a + bX + cY) = a + b�(X) + c�(Y)

460 | Chapter 17: Theory for Inference and Prediction

But to find the variance of a + bX + cY, we need to know how X and Y vary together,
which is called the joint distribution of X and Y. The joint distribution of X and Y
assigns probabilities to combinations of their outcomes:

ℙ(X = x, Y = y) = px, y

A summary of how X and Y vary together, called the covariance, is defined as:

Cov(X, Y) = �[(X − �[X])(Y − �[Y])]
 = �[(XY) − �(X)�(Y)]
 = Σx, y[(xy) − �(X)�(Y)]px, y

The covariance enters into the calculation of (a + bX + cY), as shown here:

�(a + bX + cY) = b2�(X) + 2bcCov(X, Y) + c2�(Y)

In the special case where X and Y are independent, their joint distribution is simpli‐
fied to px, y = pxpy. And in this case, Cov(X, Y) = 0, so:

�(a + bX + cY) = b2�(X) + c2�(Y)

These properties can be used to show that for random variables X1, X2, …, Xn that are
independent with expected value μ and standard deviation σ, the average, X̄, has the
following expected value, variance, and standard deviation:

�(X̄) = μ
�(X̄) = σ2/n

SD(X̄) = σ/ n

This situation arises with the urn model where X1, …, Xn are the result of random
draws with replacement. In this case, μ represents the average of the urn and σ the
standard deviation.

However, when we make random draws from the urn without replacement, the Xi are
not independent. In this situation, X̄ has the following expected value and variance:

�(X̄) = μ

�(X̄) = N − n
N − 1 × σ2

n

Probability for Inference and Prediction | 461

Notice that while the expected value is the same as when the draws are without
replacement, the variance and SD are smaller. These quantities are adjusted by
(N − n)/(N − 1), which is called the finite population correction factor. We used this
formula earlier to compute the SD(θ̂) in our Wikipedia example.

Returning to Figure 17-3, we see that the sampling distribution for X̄ in the center of
the diagram has an expectation that matches the population average; the SD decreases
like 1/ n but even more quickly because we are drawing without replacement; and
the distribution is shaped like a normal curve. We saw these properties earlier in our
simulation study.

Now that we have outlined the general properties of random variables and their
sums, we connect these ideas to testing, confidence, and prediction intervals.

Probability Behind Testing and Intervals
As mentioned at the beginning of this chapter, probability is the underpinning of
conducting a hypothesis test, providing a confidence interval for an estimator and a
prediction interval for a future observation.

We now have the technical machinery to explain these concepts, which we have care‐
fully defined in this chapter without the use of formal technicalities. This time we
present the results in terms of random variables and their distributions.

Recall that a hypothesis test relies on a null model that provides the probability distri‐
bution for the statistic, θ̂ . The tests we carried out were essentially computing (some‐
times approximately) the following probability. Given the assumptions of the null
distribution:

ℙ(θ̂ ≥ observed statistic)

Oftentimes, the random variable is normalized to make these computations easier
and standard:

ℙ
θ̂ − θ∗

SD(θ̂)
≥ observed stat−θ∗

SD(θ̂)

When SD(θ̂) is not known, we have approximated it via simulation, and when we
have a formula for SD(θ̂) in terms of SD(pop), we substitute SD(samp) for SD(pop).
This normalization is popular because it simplifies the null distribution. For example,
if θ̂ has an approximate normal distribution, then the normalized version will have a

462 | Chapter 17: Theory for Inference and Prediction

standard normal distribution with center 0 and SD 1. These approximations are use‐
ful when a lot of hypothesis tests are being carried out, such as with A/B testing, since
there is no need to simulate for every statistic because we can just use the normal
curve probabilities.

The probability statement behind a confidence interval is quite similar to the proba‐
bility calculations used in testing. In particular, to create a 95% confidence interval
where the sampling distribution of the estimator is roughly normal, we standardize
and use the probability:

ℙ
|θ̂ − θ∗|

SD(θ̂)
≤ 1.96 = ℙ θ̂ − 1.96SD(θ̂) ≤ θ∗ ≤ θ̂ + 1.96SD(θ̂)

 ≈ 0.95

Note that θ̂ is a random variable in the preceding probability statement and θ∗ is con‐
sidered a fixed unknown parameter value. The confidence interval is created by sub‐
stituting the observed statistic for θ̂ and calling it a 95% confidence interval:

observed stat − 1.96SD(θ̂), observed stat + 1.96SD(θ̂)

Once the observed statistic is substituted for the random variable, then we say that we
are 95% confident that the interval we have created contains the true value θ∗. In
other words, in 100 cases where we compute an interval in this way, we expect 95 of
them to cover the population parameter that we are estimating.

Next, we consider prediction intervals. The basic notion is to provide an interval that
denotes the expected variation of a future observation about the estimator. In the
simple case where the statistic is X̄ and we have a hypothetical new observation X0
that has the same expected value, say μ, and standard deviation, say σ, of the Xi, then
we find the expected variation of the squared loss:

�[(X0 − X̄)2] = �{[(X0 − μ) − (X̄ − μ)]2}

 = �(X0) +�(X̄)

 = σ2 + σ2/n
 = σ 1 + 1/n

Notice there are two parts to the variation: one due to the variation of X0 and the
other due to the approximation of �(X0) by X̄.

Probability for Inference and Prediction | 463

In the case of more complex models, the variation in prediction also breaks down
into two components: the inherent variation in the data about the model plus the var‐
iation in the sampling distribution due to the estimation of the model. Assuming the
model is roughly correct, we can express it as follows:

Y = Xθ∗ + �

where θ∗ is a (p + 1) × 1 column vector, X is an n × (p + 1) design matrix, and � con‐
sists of n independent random variables that each have expected value 0 and variance
σ2. In this equation, Y is a vector of random variables, where the expected value of
each variable is determined by the design matrix and the variance is σ2. That is, the
variation about the line is constant in that it does not change with x.

When we create prediction intervals in regression, they are given a 1 × (p + 1) row
vector of covariates, called x0. Then the prediction is x0θ̂ , where θ̂ is the estimated
parameter vector based on the original y and design matrix X. The expected squared
error in this prediction is:

�[(Y0 − x0θ̂)2] = �{[(Y0 − x0θ∗) − (x0θ̂ − x0θ∗)]2}

 = �(�0) +�(x0θ̂)

 = σ2[1 + x0(X⊤X)−1x0
⊤]

We approximate the variance of � with the variance of the residuals from the least
squares fit.

The prediction intervals we create using the normal curve rely on the additional
assumption that the distribution of the errors is approximately normal. This is a
stronger assumption than we make for the confidence intervals. With confidence
intervals, the probability distribution of Xi need not look normal for X̄ to have an
approximate normal distribution. Similarly, the probability distribution of � in the
linear model need not look normal for the estimator θ̂ to have an approximate nor‐
mal distribution.

We also assume that the linear model is approximately correct when making these
prediction intervals. In Chapter 16, we considered the case where the fitted model
doesn’t match the model that has produced the data. We now have the technical
machinery to derive the model bias-variance trade-off introduced in that chapter. It’s
very similar to the prediction interval derivation with a couple of small twists.

464 | Chapter 17: Theory for Inference and Prediction

Probability Behind Model Selection
In Chapter 16, we introduced model under- and overfitting with mean squared error
(MSE). We described a general setup where the data might be expressed as follows:

y = g(x) + �

The � are assumed to behave like random errors that have no trends or patterns, have
constant variance, and are independent of one another. The signal in the model is the
function g(). The data are the (xi, yi) pairs, and we fit models by minimizing the MSE:

min
f ∈ ℱ

1
n ∑

i = 1

n
(yi − f (xi)

2

Here ℱ is the collection of models over which we are minimizing. This collection
might be all polynomials of degree m or less, bent lines with a bend at point k, and so
on. Note that g doesn’t have to be in the collection of functions that we are using to fit
a model.

Our goal in model selection is to land on a model that predicts a new observation
well. For a new observation, we would like the expected loss to be small:

�[y0 − f (x0)]2

This expectation is with respect to the distribution of possible (x0, y0) and is called
risk. Since we don’t know the population distribution of (x0, y0), we can’t calculate the
risk, but we can approximate it by the average loss over the data we have collected:

�[y0 − f (x0)]2 ≈ 1
n ∑

i = 1

n
(yi − f (xi))2

This approximation goes by the name of empirical risk. But hopefully you recognize it
as the MSE:

We fit models by minimizing the empirical risk (or MSE) over all possible models,
ℱ = { � }:

min
f ∈ ℱ

1
n ∑

i = 1

n
(yi − f (xi))2

Probability for Inference and Prediction | 465

The fitted model is called f̂ , a slightly more general representation of the linear
model Xθ̂ . This technique is aptly called empirical risk minimization.

In Chapter 16, we saw problems arise when we used the empirical risk to both fit a
model and evaluate the risk for a new observation. Ideally, we want to estimate the
risk (expected loss):

�[(y0 − f̂ (x0))2]

where the expected value is over the new observation (x0, y0) and over f̂ (which
involves the original data (xi, yi), i = 1, …, n).

To understand the problem, we decompose this risk into three parts representing the
model bias, the model variance, and the irreducible error from �:

�[y0 − f̂ (x0)]2

= �[g(x0) + �0 − f̂ (x0)]2 definition of y0

= �[g(x0) + �0 − �[f̂ (x0)] + �[f̂ (x0)] − f̂ (x0)]2 adding ±�[f̂ (x0)]

= �[g(x0) − �[f̂ (x0)] − (f̂ (x0) − �[f̂ (x0)]) + �0]2 rearranging terms

= [g(x0) − �[f̂ (x0)]]2 + �[f̂ (x0) − �[f̂ (x0)]]2 + σ2 expanding the square

= model bias2 + model variance + error

To derive the equality labeled “expanding the square,” we need to formally prove that
the cross-product terms in the expansion are all 0. This takes a bit of algebra and we
don’t present it here. But the main idea is that the terms �0 and (f̂ (x0) − �[f̂ (x0]) are
independent and both have the expected value 0. The remaining three terms in the
final equation—model bias, model variance, and irreducible error—are described as
follows:

Model bias
The first of the three terms in the final equation is model bias (squared). When
the signal, g, does not belong to the model space, we have model bias. If the
model space can approximate g well, then the bias is small. Note that this term is
not present in our prediction intervals because we assumed that there is no (or
minimal) model bias.

466 | Chapter 17: Theory for Inference and Prediction

Model variance
The second term represents the variability in the fitted model that comes from
the data. We have seen in earlier examples that high-degree polynomials can
overfit, and so vary a lot from one set of data to the next. The more complex the
model space, the greater the variability in the fitted model.

Irreducible error
Finally, the last term is the variability in the error, the �0, which is dubbed the
“irreducible error.” This error sticks around whether we have underfit with a sim‐
ple model (high bias) or overfit with a complex model (high variance).

This representation of the expected loss shows the bias-variance decomposition of a
fitted model. Model selection aims to balance these two competing sources of error.
The train-test split, cross-validation, and regularization introduced in Chapter 16 are
techniques to either mimic the expected loss for a new observation or penalize a
model from overfitting.

While we have covered a lot of theory in this chapter, we have attempted to tie it to
the basics of the urn model and the three distributions: population, sample, and sam‐
pling. We wrap up the chapter with a few cautions to keep in mind when performing
hypothesis tests and when making confidence or prediction intervals.

Summary
Throughout this chapter, we based our development of the theory behind inference
and prediction on the urn model. The urn induced a probability distribution on the
estimator, such as the sample mean and the least squares regression coefficients. We
end this chapter with some cautions about these statistical procedures.

We saw how the SD of an estimator has a factor of the square root of the sample size
in the denominator. When samples are large, the SD can be quite small and can lead
to rejecting a hypothesis or very narrow confidence intervals. When this happens it’s
good to consider the following:

• Is the difference that you have detected an important difference? That is, a p-
value may be quite small, indicating a surprising result, but the actual effect
observed may be unimportant. Statistical significance does not imply practical sig‐
nificance.

• Keep in mind that these calculations do not incorporate bias, such as non-
response bias and measurement bias. The bias might well be larger than any dif‐
ference due to chance variation in the sampling distribution.

Summary | 467

At times, we know the sample is not from a chance mechanism, but it can still be use‐
ful to carry out a hypothesis test. In this case, the null model would test whether the
sample (and estimator) are as if they were at random. When this test is rejected, we
confirm that something nonrandom has led to the observed data. This can be a useful
conclusion: that the difference between what we expect and what we observed is not
explained by chance.

At other times, the sample consists of the complete population. When this happens,
we might not need to make confidence intervals or hypothesis tests because we have
observed all values in the population. That is, inference is not required. However, we
can instead place a different interpretation on hypothesis tests: we can suppose that
any relation observed between two features was randomly distributed without rela‐
tion to each other.

We also saw how the bootstrap can be used when we don’t have enough information
about the population. The bootstrap is a powerful technique, but it has limitations:

• Make sure that the original sample is large and random so that the sample resem‐
bles the population.

• Repeat the bootstrap process many times. Typically 10,000 replications is a rea‐
sonable number.

• The bootstrap tends to have difficulties when:
— The estimator is influenced by outliers.
— The parameter is based on extreme values of the distribution.
— The sampling distribution of the statistic is far from bell shaped.

Alternatively, we rely on the sampling distribution being approximately normal in
shape. At times, the sampling distribution looks roughly normal but has thicker tails.
In these situations, the family of t-distributions might be appropriate to use instead of
the normal.

A model is usually only an approximation of underlying reality, and the precision of
the statement that θ∗ exactly equals 0 is at odds with this notion of a model. The
inference depends on the correctness of our model. We can partially check the model
assumptions, but some amount of doubt goes with any model. In fact, it often hap‐
pens that the data suggest more than one possible model, and these models may even
be contradictory.

Lastly, at times, the number of hypothesis tests or confidence intervals can be quite
large, and we need to exercise caution to avoid spurious results. This problem is
called p-hacking and is another example of the reproducibility crisis in science
described in Chapter 10. P-hacking is based on the notion that if we test, say, 100
hypotheses, all of which are true, then we would expect to get a few surprise results

468 | Chapter 17: Theory for Inference and Prediction

and reject a few of these hypotheses. This phenomenon can happen in multiple linear
regression when we have a large number of features in a model, and techniques have
been developed to limit the dangers of these false discoveries.

We next recap the modeling process with a case study.

Summary | 469

CHAPTER 18

Case Study: How to Weigh a Donkey

Donkeys play important roles in rural Kenya. People need them to transport crops,
water, and people and to plow fields. When a donkey gets sick, the veterinarian needs
to figure out how much the donkey weighs in order to prescribe the right amount of
medicine. But many vets in rural Kenya don’t have access to a scale, so they need to
guess the donkey’s weight. Too little medicine can allow an infection to reemerge; too
much medicine can cause a harmful overdose. There are over 1.8 million donkeys in
Kenya, so it’s important to have a simple, accurate way to estimate the weight of a
donkey.

In this case study, we follow the work of Kate Milner and Jonathan Rougier to create a
model that veterinarians in the Kenyan countryside can use to make accurate esti‐
mates of a donkey’s weight. As usual, we walk through the steps of the data science
lifecycle, but this time our work departs from the basics covered so far in this book.
You can think of this case study as an opportunity to reflect on many of the core prin‐
ciples of working with data and to understand how they can be extended to address
the context of the situation. We directly evaluate sources of measurement error,
design a special loss function that reflects the concern about an overdose, build a
model while keeping applicability top of mind, and evaluate model predictions using
special criteria that are relative to the donkey’s size.

We begin with the scope of the data.

Donkey Study Question and Scope
Our motivating question is: how can a vet accurately estimate the weight of a donkey
when they’re out in the countryside without a scale? Let’s think about the information
that is more readily available to them. They can carry a tape measure and find the size
of the donkey in other dimensions, like its height. They can observe the animal’s sex,

471

https://doi.org/10.1111/j.1740-9713.2014.00768.x

assess its general condition, and inquire about the donkey’s age. So we can refine our
question to: how can a vet accurately predict the weight of a donkey from easy-to-get
measurements?

To address this more precise question, The Donkey Sanctuary carried out a study at
17 mobile deworming sites in rural Kenya.

In terms of scope (Chapter 2), the target population is the donkey population in rural
Kenya. The access frame is the set of all donkeys that were brought into the de-
worming sites. The sample consists of all donkeys brought to these sites between July
23 and August 11, 2010, with a few caveats: if there were too many donkeys to mea‐
sure at a site, the scientists selected a subset of donkeys to measure, and any pregnant
or visibly diseased donkeys were excluded from the study.

To avoid accidentally weighing a donkey twice, each donkey was marked after weigh‐
ing. To quantify the measurement error and assess repeatability of the weighing pro‐
cess, 31 donkeys were measured twice, without the staff knowing that a donkey was
being reweighed.

With this sampling process in mind, potential sources of bias for this data include:

Coverage bias
The 17 sites were located in the regions surrounding the Yatta district in eastern
Kenya and the Naivasha district in the Rift Valley.

Selection bias
Only donkeys brought to the sanctuary were enrolled in the study, and when
there were too many donkeys at a site, a nonrandom sample was selected.

Measurement bias
In addition to measurement error, the scale might have a bias. Ideally, the scale(s)
would be calibrated before and after use at a site (Chapter 12).

Despite these potential sources of bias, the access frame seems reasonable for access‐
ing donkeys from rural areas in Kenya that have owners looking after the health of
their animals.

Our next step is to clean the data.

Wrangling and Transforming
We begin by taking a peek at the contents of our datafile. To do this, we open the file
and examine the first few rows (Chapter 8):

from pathlib import Path

Create a Path pointing to our datafile
insp_path = Path('data/donkeys.csv')

472 | Chapter 18: Case Study: How to Weigh a Donkey

https://oreil.ly/uUyZj

with insp_path.open() as f:
 # Display first five lines of file
 for _ in range(5):
 print(f.readline(), end='')

BCS,Age,Sex,Length,Girth,Height,Weight,WeightAlt
3,<2,stallion,78,90,90,77,NA
2.5,<2,stallion,91,97,94,100,NA
1.5,<2,stallion,74,93,95,74,NA
3,<2,female,87,109,96,116,NA

Since the file is CSV-formatted, we can easily read it into a dataframe:

donkeys = pd.read_csv("data/donkeys.csv")
donkeys

 BCS Age Sex Length Girth Height Weight WeightAlt
0 3.0 <2 stallion 78 90 90 77 NaN
1 2.5 <2 stallion 91 97 94 100 NaN
2 1.5 <2 stallion 74 93 95 74 NaN
...
541 2.5 10-15 stallion 103 118 103 174 NaN
542 3.0 2-5 stallion 91 112 100 139 NaN
543 3.0 5-10 stallion 104 124 110 189 NaN

544 rows × 8 columns

Over five hundred donkeys participated in the survey, and eight measurements were
made on each donkey. According to the documentation, the granularity is a single
donkey (Chapter 9). Table 18-1 provides descriptions of the eight features.

Table 18-1. Donkey study codebook

Feature Data type Feature type Description
BCS float64 Ordinal Body condition score: from 1 (emaciated) to 3 (healthy) to 5 (obese) in increments

of 0.5.

Age string Ordinal Age in years, under 2, 2–5, 5–10, 10–15, 15–20, and over 20 years

Sex string Nominal Sex categories: stallion, gelding, female

Length int64 Numeric Body length (cm) from front leg elbow to back of pelvis

Girth int64 Numeric Body circumference (cm), measured just behind front legs

Height int64 Numeric Body height (cm) up to point where neck connects to back

Weight int64 Numeric Weight (kilogram)

WeightAlt float64 Numeric Second weight measurement taken on a subset of donkeys

Figure 18-1 is a stylized representation of a donkey as a cylinder with neck and legs
appended. Height is measured from the ground to the base of the neck above the

Wrangling and Transforming | 473

shoulders; girth is around the body, just behind the legs; and length is from the front
elbow to the back of the pelvis.

Figure 18-1. Diagram of a donkey’s girth, length, and height, characterized as measure‐
ments on a cylinder

Our next step is to perform some quality checks on the data. In the previous section,
we listed a few potential quality concerns based on scope. Next, we check the quality
of the measurements and their distributions.

Let’s start by comparing the two weight measurements made on the subset of donkeys
to check on the consistency of the scale. We make a histogram of the difference
between these two measurements for the 31 donkeys that were weighed twice:

donkeys = donkeys.assign(difference=donkeys["WeightAlt"] - donkeys["Weight"])

px.histogram(donkeys, x="difference", nbins=15,
 labels=dict(
 difference="Differences of two weighings (kg)
on the same donkey"
),
 width=350, height=250,
)

474 | Chapter 18: Case Study: How to Weigh a Donkey

The measurements are all within 1 kg of each other, and the majority are exactly the
same (to the nearest kilogram). This gives us confidence in the accuracy of the
measurements.

Next, we look for unusual values in the body condition score:

donkeys['BCS'].value_counts()

BCS
3.0 307
2.5 135
3.5 55
 ...
1.5 5
4.5 1
1.0 1
Name: count, Length: 8, dtype: int64

From this output, we see that there’s only one emaciated (BCS = 1) and one obese
(BCS = 4.5) donkey. Let’s look at the complete records for these two donkeys:

donkeys[(donkeys['BCS'] == 1.0) | (donkeys['BCS'] == 4.5)]

 BCS Age Sex Length Girth Height Weight WeightAlt
291 4.5 10-15 female 107 130 106 227 NaN
445 1.0 >20 female 97 109 102 115 NaN

Since these BCS values are extreme, we want to be cautious about including these two
donkeys in our analysis. We have only one donkey in each of these extreme cate‐
gories, so our model might well not extend to donkeys with a BCS of 1 or 4.5. We
remove these two records from the dataframe and note that our analysis may not
extend to emaciated or obese donkeys. In general, we exercise caution in dropping
records from a dataframe. Later, we may also decide to remove the five donkeys with
a score of 1.5 if they appear anomalous in our analysis, but for now, we keep them in
our dataframe. In general, we need a good reason to exclude data, and we should
document these actions since they can impact our findings. Removing data can lead
to over fitting, if we drop any record that disagrees with the model.

We remove these two outliers next:

def remove_bcs_outliers(donkeys):
 return donkeys[(donkeys['BCS'] >= 1.5) & (donkeys['BCS'] <= 4)]

donkeys = (pd.read_csv('data/donkeys.csv')
 .pipe(remove_bcs_outliers))

Now, we examine the distribution of values for weight to see if there are any issues
with quality:

Wrangling and Transforming | 475

px.histogram(donkeys, x='Weight', nbins=40, width=350, height=250,
 labels={'Weight':'Weight (kg)'})

It appears there is one very light donkey weighing less than 30 kg. Next, we check the
relationship between weight and height to assess the quality of the data for analysis:

px.scatter(donkeys, x='Height', y='Weight', width=350, height=250,
 labels={'Weight':'Weight (kg)', 'Height':'Height (cm)'})

The small donkey is far from the main concentration of donkeys and would overly
influence our models. For this reason, we exclude it. Again, we keep in mind that we
may also want to exclude the one or two heavy donkeys if they appear to overly influ‐
ence our future model fitting:

def remove_weight_outliers(donkeys):
 return donkeys[(donkeys['Weight'] >= 40)]

donkeys = (pd.read_csv('data/donkeys.csv')

476 | Chapter 18: Case Study: How to Weigh a Donkey

 .pipe(remove_bcs_outliers)
 .pipe(remove_weight_outliers))

donkeys.shape

(541, 8)

In summary, based on our cleaning and quality checks, we removed three anomalous
observations from the dataframe. Now we’re nearly ready to begin our exploratory
analysis. Before we proceed, we set aside some of our data as a test set.

We talked about why it’s important to separate out a test set from the train set in
Chapter 16. A best practice is to separate out a test set early in the analysis, before we
explore the data in detail, because in EDA, we begin to make decisions about what
kinds of models to fit and what variables to use in the model. It’s important that our
test set isn’t involved in these decisions so that it imitates how our model would per‐
form with entirely new data.

We divide our data into an 80/20 split, where we use 80% of the data to explore and
build a model. Then we evaluate the model with the 20% that has been set aside. We
use a simple random sample to split the dataframe into the test and train sets. To
begin, we randomly shuffle the indices of the dataframe:

np.random.seed(42)
n = len(donkeys)
indices = np.arange(n)
np.random.shuffle(indices)
n_train = int(np.round((0.8 * n)))

Next, we assign the first 80% of the dataframe to the train set and the remaining 20%
to the test set:

train_set = donkeys.iloc[indices[:n_train]]
test_set = donkeys.iloc[indices[n_train:]]

Now we’re ready to explore the training data and look for useful relationships and
distributions that inform our modeling.

Exploring
Let’s look at the features in our dataframe for shapes and relationships that will help
us make transformations and models (Chapter 10). We start by looking at how the
categorical features of age, sex, and body condition relate to weight:

f1 = px.box(train_set, x="Age", y="Weight",
 category_orders = {"Age":['<2', '2-5', '5-10',
 '10-15', '15-20', '>20']})
f2 = px.box(train_set, x="Sex", y="Weight")

We wrote the left_right function as a shorthand for plotly's make_subplots
fig = left_right(f1, f2, column_widths=[0.7, 0.3])

Exploring | 477

fig.update_xaxes(title='Age (yr)', row=1, col=1)
fig.update_xaxes(title='Sex', row=1, col=2)
fig.update_yaxes(title='Weight (kg)', row=1, col=1)

fig = px.box(train_set, x="BCS", y="Weight", points="all",
 labels={'Weight':'Weight (kg)', 'BCS':'Body condition score'},
 width=550, height=250)
fig

478 | Chapter 18: Case Study: How to Weigh a Donkey

Notice that we plotted the points as well as the boxes for the body condition score
because we saw earlier that there are only a handful of observations with a score of
1.5, so we don’t want to read too much into a box plot with only a few data points
(Chapter 11). It appears that the median weight increases with the body condition
score, but not in a simple linear fashion. On the other hand, weight distributions for
the three sex categories appear roughly the same. As for age, once a donkey reaches
five years, the distribution of weight doesn’t seem to change much. But donkeys
under age 2 and donkeys from 2 to 5 years of age have lower weights in general.

Next, let’s examine the quantitative variables. We plot all pairs of quantitative vari‐
ables in the scatterplot matrix:

Exploring | 479

The height, length, and girth of donkeys all appear linearly associated with weight
and with each other. This is not too surprising; given one of the donkey’s dimensions,
we should have a good guess about the other dimensions. Girth appears most highly
correlated with weight, and this is confirmed by the correlation coefficient matrix:

train_numeric.corr()

 Weight Length Girth Height
Weight 1.00 0.78 0.90 0.71
Length 0.78 1.00 0.66 0.58
Girth 0.90 0.66 1.00 0.70
Height 0.71 0.58 0.70 1.00

480 | Chapter 18: Case Study: How to Weigh a Donkey

Our explorations uncovered several aspects of the data that may be relevant for mod‐
eling. We found that the donkey’s girth, length, and height all have linear associations
with weight and with each other, and girth has the strongest linear relationship with
weight. We also observed that the body condition score has a positive association
with weight; the sex of the donkey does not appear related to weight; and neither does
age for those donkeys over 5 years. In the next section, we use these findings to build
our model.

Modeling a Donkey’s Weight
We want to build a simple model for predicting the weight of a donkey. The model
should be easy for a vet to implement in the field with only a hand calculator. The
model should also be easy to interpret.

We also want the model to depend on the vet’s situation—for example, whether
they’re prescribing an antibiotic or an anesthetic. For brevity, we only consider the
case of prescribing an anesthetic. Our first step is to choose a loss function that
reflects this situation.

A Loss Function for Prescribing Anesthetics
An overdose of an anesthetic can be much worse than an underdose. It’s not hard for
a vet to see when a donkey has too little anesthetic (it’ll complain), and the vet can
give the donkey a bit more. On the other hand, too much anesthetic can have serious
consequences and can even be fatal. Because of this, we want an asymmetric loss
function: it should have a bigger loss for an overestimate of weight compared to an
underestimate. This is in contrast to the other loss functions that we have used so far
in this book, which have all been symmetric.

We’ve created a loss function anes_loss(x) with this in mind:

def anes_loss(x):
 w = (x >= 0) + 3 * (x < 0)
 return np.square(x) * w

The relative error is 100(y − ŷ)/ ŷ , where y is the true value and ŷ is the prediction.
We can demonstrate the asymmetry of the loss function with a plot:

Modeling a Donkey’s Weight | 481

Note that a value of –10 on the x-axis reflects an overestimate of 10%.

Next, let’s fit a simple linear model using this loss function.

Fitting a Simple Linear Model
We saw that girth has the highest correlation with weight among the donkeys in our
train set. So we fit a model of the form:

θ0 + θ1Girth

To find the best fit θ0 and θ1 to the data, we first create a design matrix that has girth
and an intercept term. We also create the y vector of observed donkey weights:

X = train_set.assign(intr=1)[['intr', 'Girth']]
y = train_set['Weight']
X

 intr Girth
230 1 116
74 1 117
354 1 123
...
157 1 123
41 1 103
381 1 106

433 rows × 2 columns

482 | Chapter 18: Case Study: How to Weigh a Donkey

Now we want to find the θ0 and θ1 that minimize the average anesthetic loss over the
data. To do this, we could use calculus as we did in Chapter 15, but here we’ll instead
use the minimize method from the scipy package, which performs a numerical opti‐
mization (see Chapter 20):

from scipy.optimize import minimize

def training_loss(X, y):
 def loss(theta):
 predicted = X @ theta
 return np.mean(anes_loss(100 * (y - predicted) / predicted))
 return loss

results = minimize(training_loss(X, y), np.ones(2))
theta_hat = results['x']

After fitting:
θ₀ = -218.51
θ₁ = 3.16

Let’s see how this simple model does. We can use the model to predict the donkey
weights on our train set, then find the errors in the predictions. The residual plot that
follows shows the model error as a percentage of the predicted value. It’s more impor‐
tant for the prediction errors to be small relative to the size of the donkey, since a 10
kg error is much worse for a 100 kg donkey than a 200 kg one. Thus, we find the rela‐
tive error of each prediction:

predicted = X @ theta_hat
resids = 100 * (y - predicted) / predicted

Let’s examine a scatterplot of the relative errors:

resid = pd.DataFrame({
 'Predicted weight (kg)': predicted, 'Percent error': resids})
px.scatter(resid, x='Predicted weight (kg)', y='Percent error',
 width=350, height=250)

Modeling a Donkey’s Weight | 483

With the simplest model, some of the predictions are off by 20% to 30%. Let’s see if a
slightly more complicated model improves the predictions.

Fitting a Multiple Linear Model
Let’s consider additional models that incorporate the other numeric variables. We
have three numeric variables that measure the donkey’s girth, length, and height, and
there are seven total ways to combine these variables in a model:

[['Girth'],
 ['Length'],
 ['Height'],
 ['Girth', 'Length'],
 ['Girth', 'Height'],
 ['Length', 'Height'],
 ['Girth', 'Length', 'Height']]

For each of these variable combinations, we can fit a model with our special loss func‐
tion. Then we can look at how well each model does on the train set:

def training_error(model):
 X = train_set.assign(intr=1)[['intr', *model]]
 theta_hat = minimize(training_loss(X, y), np.ones(X.shape[1]))['x']
 predicted = X @ theta_hat
 return np.mean(anes_loss(100 * (y - predicted)/ predicted))

model_risks = [
 training_error(model)
 for model in models
]

 model mean_training_error
0 [Girth] 94.36
1 [Length] 200.55
2 [Height] 268.88
3 [Girth, Length] 65.65
4 [Girth, Height] 86.18
5 [Length, Height] 151.15
6 [Girth, Length, Height] 63.44

As we stated earlier, the girth of the donkey is the single best predictor for weight.
However, the combination of girth and length has an average loss that is quite a bit
smaller than girth alone, and this particular two-variable model is nearly as good as
the model that includes all three. Since we want a simple model, we select the two-
variable model over the three-variable one.

Next, we use feature engineering to incorporate categorical variables into the model,
which improves our model.

484 | Chapter 18: Case Study: How to Weigh a Donkey

Bringing Qualitative Features into the Model
In our exploratory analysis, we found that the box plots of weight for a donkey’s body
condition and age could contain useful information in predicting weight. Since these
are categorical features, we can transform them into 0-1 variables with one-hot
encoding, as explained in Chapter 15.

One-hot encoding lets us adjust the intercept term in the model for each combination
of categories. Our current model includes the numeric variables girth and length:

θ0 + θ1Girth + θ2Length

If we cleaned up the age feature to consist of three categories—Age<2, Age2-5, and
Age>5—a one-hot encoding of age creates three 0-1 features, one for each category.
Including the one-hot-encoded feature in the model gives:

θ0 + θ1Girth + θ2Length
+ θ3Age<2 + θ4Age2‐5

In this model, Age<2 is 1 for a donkey younger than 2 and 0 otherwise. Similarly,
Age2-5 is 1 for a donkey between 2 and 5 years old and 0 otherwise.

We can think of this model as fitting three linear models that are identical except for
the size of the constant, since the model is equivalent to:

(θ0 + θ3) + θ1Girth + θ2Length for a donkey under 2
(θ0 + θ4) + θ1Girth + θ2Length for a donkey between 2 and 4

θ0 + θ1Girth + θ2Length for a donkey over 5

Now let’s apply a one-hot encoding to all three of our categorical variables (body con‐
dition, age, and sex):

X_one_hot = (
 train_set.assign(intr=1)
 [['intr', 'Length', 'Girth', 'BCS', 'Age', 'Sex']]
 .pipe(pd.get_dummies, columns=['BCS', 'Age', 'Sex'])
 .drop(columns=['BCS_3.0', 'Age_5-10', 'Sex_female'])
)
X_one_hot

Modeling a Donkey’s Weight | 485

 intr Length Girth BCS_1.5 ... Age_<2 Age_>20 Sex_gelding Sex_stallion
230 1 101 116 0 ... 0 0 0 1
74 1 92 117 0 ... 0 0 0 1
354 1 103 123 0 ... 0 1 0 0
...
157 1 93 123 0 ... 0 0 0 1
41 1 89 103 0 ... 1 0 0 0
381 1 86 106 0 ... 0 0 0 0

433 rows × 15 columns

We dropped one dummy variable for each categorical feature. Since BCS, Age, and Sex
have six, six, and three categories, respectively, we have added 12 dummy variables to
the design matrix for a total of 15 columns, including the intercept term, girth, and
length.

Let’s see which categorical variables, if any, improve on our two-variable model. To do
this, we can fit the model that includes the dummies from all three categorical fea‐
tures, along with girth and length:

results = minimize(training_loss(X_one_hot, y), np.ones(X_one_hot.shape[1]))

theta_hat = results['x']

y_pred = X_one_hot @ theta_hat
training_error = (np.mean(anes_loss(100 * (y - y_pred)/ y_pred)))

print(f'Training error: {training_error:.2f}')

Training error: 51.47

According to average loss, this model does better than the previous model with only
Girth and Length. But let’s try to make this model simpler while keeping its accuracy.
To do this, we look at the coefficients for each of the dummy variables to see how
close they are to 0 and to one another. In other words, we want to see how much the
intercept might change if we include the coefficients in the model. A plot of the coef‐
ficients will make this comparison easy:

486 | Chapter 18: Case Study: How to Weigh a Donkey

The coefficients confirm what we saw in the box plots. The coefficients for the sex of
the donkey are close to zero, meaning that knowing the sex doesn’t really change the
weight prediction. We also see that combining the age categories for donkeys over 5
years will simplify the model without losing much. Lastly, since there are so few don‐
keys with a body condition score of 1.5 and its coefficient is close to that of a BCS of
2, we are inclined to combine these two categories.

We update the design matrix in view of these findings:

def combine_bcs(X):
 new_bcs_2 = X['BCS_2.0'] + X['BCS_1.5']
 return X.assign(**{'BCS_2.0': new_bcs_2}).drop(columns=['BCS_1.5'])

def combine_age_and_sex(X):
 return X.drop(columns=['Age_10-15', 'Age_15-20', 'Age_>20',
 'Sex_gelding', 'Sex_stallion'])

X_one_hot_simple = (
 X_one_hot.pipe(combine_bcs)
 .pipe(combine_age_and_sex)
)

And then we fit the simpler model:

results = minimize(training_loss(X_one_hot_simple, y),
 np.ones(X_one_hot_simple.shape[1]))
theta_hat = results['x']
y_pred = X_one_hot_simple @ theta_hat
training_error = (np.mean(anes_loss(100 * (y - y_pred)/ y_pred)))
print(f'Training error: {training_error:.2f}')

Training error: 53.20

Modeling a Donkey’s Weight | 487

The average error is close enough to that of the more complex model for us to settle
on this simpler one. Let’s display the coefficients and summarize the model:

 var theta_hat
0 intr -175.25
1 Length 1.01
2 Girth 1.97
3 BCS_2.0 -6.33
4 BCS_2.5 -5.11
5 BCS_3.5 7.36
6 BCS_4.0 20.05
7 Age_2-5 -3.47
8 Age_<2 -6.49

Our model is roughly:

Weight ≈ − 175 + Length + 2Girth

After this initial approximation, we use the categorical features to make some
adjustments:

• BCS 2 or less? Subtract 6.5 kg.
• BCS 2.5? Subtract 5.1 kg.
• BCS 3.5? Add 7.4 kg.
• BCS 4? Add 20 kg.
• Age under 2 years? Subtract 6.5 kg.
• Age between 2 and 5 years? Subtract 3.5 kg.

This model seems quite simple to implement because after our initial estimate based
on the length and girth of the donkey, we add or subtract a few numbers based on
answers to a few yes/no questions. Let’s see how well the model does in predicting the
weights of the donkeys in the test set.

Model Assessment
Remember that we put aside 20% of our data before exploring and modeling with the
remaining 80%. We are now ready to apply what we have learned from the training
set to the test set. That is, we take our fitted model and use it to predict the weights of
the donkeys in the test set. To do this, we need to prepare the test set. Our model uses
the girth and length of the donkey, as well as dummy variables for the donkey’s age

488 | Chapter 18: Case Study: How to Weigh a Donkey

and body condition score. We apply all of our transformations on the train set to our
test set:

y_test = test_set['Weight']

X_test = (
 test_set.assign(intr=1)
 [['intr', 'Length', 'Girth', 'BCS', 'Age', 'Sex']]
 .pipe(pd.get_dummies, columns=['BCS', 'Age', 'Sex'])
 .drop(columns=['BCS_3.0', 'Age_5-10', 'Sex_female'])
 .pipe(combine_bcs)
 .pipe(combine_age_and_sex)
)

We consolidate all of our manipulations of the design matrix to create the final ver‐
sion that we settled on in our modeling with the train set. Now we are ready to use
the θs that we fitted with the train set to make weight predictions for those donkeys in
the test set:

y_pred_test = X_test @ theta_hat
test_set_error = 100 * (y_test - y_pred_test) / y_pred_test

Then we can plot the relative prediction errors:

Remember that positive relative error means underestimating weight, which is not as
critical as overestimating weight. From this residual plot, we see that nearly all of the
test set weights are within 10% of the predictions, and only one error that exceeds
10% errs on the side of overestimation. This makes sense given that our loss function
penalized overestimation more.

An alternative scatterplot that shows the actual and predicted values along with lines
marking 10% error gives a different view:

Modeling a Donkey’s Weight | 489

The 10% lines lie farther from the prediction line for larger weights.

We’ve accomplished our goal! We have a model that uses easy-to-get measurements,
is simple enough to explain on an instruction sheet, and makes predictions within
10% of the actual donkey weight. Next, we summarize this case study and reflect on
our model.

Summary
In this case study, we demonstrated the different purposes of modeling: description,
inference, and prediction. For description, we sought a simple, understandable
model. We handcrafted this model, beginning with our findings from the exploratory
phase of the analysis. Every action we took to include a feature in the model, collapse
categories, or transform a feature amounts to a decision we made while investigating
the data.

In modeling a natural phenomenon such as the weight of a donkey, we would ideally
make use of physical and statistical models. In this case, the physical model is the rep‐
resentation of a donkey by a cylinder. An inquisitive reader might have pointed out
that we could have used this representation directly to estimate the weight of a don‐
key (cylinder) from its length and girth (since girth is 2πr):

weight ∝ girth2 × length

490 | Chapter 18: Case Study: How to Weigh a Donkey

This physical model suggests that the log-transformed weight is approximately linear
in girth and length:

log(weight) ∝ 2log(girth) + log(length)

Given this physical model, you might wonder why we did not use logarithmic or
square transformations in fitting our model. We leave you to investigate such a model
in greater detail. But generally, if the range of values measured is small, then the log
function is roughly linear. To keep our model simple, we chose not to make these
transformations given the strength of the statistical model seen by the high correla‐
tion between girth and weight.

We did a lot of data dredging in this modeling exercise. We examined all possible
models built from linear combinations of the numeric features, and we examined
coefficients of dummy variables to decide whether to collapse categories. When we
create models using an iterative approach like this, it is extremely important that we
set aside data to assess the model. Evaluating the model on new data reassures us that
the model we chose works well. The data that we set aside did not enter into any deci‐
sion making when building the model, so it gives us a good sense of how well the
model works for making predictions.

We should keep the data scope and its potential biases described earlier in mind. Our
model has done well on the test set, but the test and train sets come from the same
data collection process. We expect our model to work well in practice as long as the
scope remains the same for new data.

Finally, this case study shows how fitting models is often a balance between simplicity
and complexity and between physical and statistical models. A physical model can be
a good starting point in modeling, and a statistical model can inform a physical
model. As data scientists, we needed to make judgment calls at each step in the analy‐
sis. Modeling is both an art and a science.

This case study and several chapters preceding it have focused on fitting linear mod‐
els. Next, we consider a different kind of modeling for the situation when the
response variable we are explaining or predicting is qualitative, not quantitative.

Summary | 491

PART VI

Classification

CHAPTER 19

Classification

This chapter continues our foray into the fourth stage of the data science lifecycle: fit‐
ting and evaluating models to understand the world. So far, we’ve described how to fit
a constant model using absolute error (Chapter 4) and simple and multiple linear
models using squared error (Chapter 15). We’ve also fit linear models with an asym‐
metric loss function (Chapter 18) and with regularized loss (Chapter 16). In all of
these cases, we aimed to predict or explain the behavior of a numeric outcome—bus
wait times, smoke particles in the air, and donkey weights are all numeric variables.

In this chapter we expand our view of modeling. Instead of predicting numeric out‐
comes, we build models to predict nominal outcomes. These sorts of models enable
banks to predict whether a credit card transaction is fraudulent or not, doctors to
classify tumors as benign or malignant, and your email service to identify spam and
set it aside from your usual emails. This type of modeling is called classification and
occurs widely in data science.

Just as with linear regression, we formulate a model, choose a loss function, fit the
model by minimizing average loss for our data, and assess the fitted model. But
unlike linear regression, our model is not linear, the loss function is not squared
error, and our assessment compares different kinds of classification errors. Despite
these differences, the overall structure of model fitting carries over to this setting.
Together, regression and classification compose the primary approaches for super‐
vised learning, the general task of fitting models based on observed outcomes and
covariates.

We begin by introducing an example that we use throughout this chapter.

495

Example: Wind-Damaged Trees
In 1999, a huge storm with winds over 90 mph damaged millions of trees in the
Boundary Waters Canoe Area Wilderness (BWCAW), which has the largest tract of
virgin forest in the eastern US. In an effort to understand the susceptibility of trees to
wind damage, a researcher named Roy Lawrence Rich carried out a ground survey of
the BWCAW. In the years following this study, other researchers have used this data‐
set to model windthrow, or the uprooting of trees in strong winds.

The population under study are the trees in the BWCAW. The access frame are trans‐
ects: straight lines that cut through the natural landscape. These particular transects
begin close to a lake and travel orthogonally to the gradient of the land for 250–400
meters. Along these transects, surveyors stop every 25 meters and examine a 5-by-5-
meter plot. At each plot, trees are counted, categorized as blown down or standing,
measured in diameter at 6 ft from the ground, and their species recorded.

Sampling protocols like this are common for studying natural resources. In the
BWCAW, over 80% of the land in the region is within 500 meters of a lake, so the
access frame nearly covers the population. The study took place over the summers of
2000 and 2001, and no other natural disasters happened between the 1999 storm and
when the data were collected.

Measurements were collected on over 3,600 trees, but in this example, we examine
just the black spruce. There are over 650 of them. We read in these data:

trees = pd.read_csv('data/black_spruce.csv')
trees

 diameter storm status
0 9.0 0.02 standing
1 11.0 0.03 standing
2 9.0 0.03 standing
...
656 9.0 0.94 fallen
657 17.0 0.94 fallen
658 8.0 0.98 fallen

659 rows × 3 columns

Each row corresponds to a single tree and has the following attributes:

diameter

Diameter of the tree in cm, measured at 6 ft above the ground

496 | Chapter 19: Classification

https://oreil.ly/O2qOL
https://oreil.ly/plX02

storm

Severity of the storm (fraction of trees that fell in a 25-meter-wide area contain‐
ing the tree)

status

Tree has “fallen” or is “standing”

Let’s begin with some exploratory analysis before we turn to modeling. First, we cal‐
culate some simple summary statistics:

trees.describe()[3:]

 diameter storm
min 5.0 0.02
25% 6.0 0.21
50% 8.0 0.36
75% 12.0 0.55
max 32.0 0.98

Based on the quartiles, the distribution of tree diameter seems skewed right. Let’s
compare the distribution of diameters for the standing and fallen trees with
histograms:

The distribution of the diameter of the trees that fell in the storm is centered at 12 cm
with a right skew. In comparison, the standing trees were nearly all under 10 cm in
diameter with a mode at about 6 cm (only trees with a diameter of at least 5 cm are
included in the study).

Another feature to investigate is the strength of the storm. We plot the storm strength
against the tree diameter using the symbol and marker color to distinguish the stand‐
ing trees from the fallen ones. Since the diameter is essentially measured to the near‐
est cm, many trees have the same diameter, so we jitter the values by adding a bit of

Example: Wind-Damaged Trees | 497

noise to the diameter values to help reduce overplotting (see Chapter 11). We also
adjust the opacity of the marker colors to reveal the denser regions on the plot:

From this plot, it looks like both the tree diameter and the strength of the storm are
related to windthrow: whether the tree was uprooted or left standing. Notice that
windthrow, the feature we want to predict, is a nominal variable. In the next section,
we consider how this impacts the prediction problem.

Modeling and Classification
We’d like to create a model that explains the susceptibility of trees to windthrow. In
other words, we need to build a model for a two-level nominal feature: fallen or
standing. When the response variable is nominal, this modeling task is called classifi‐
cation. In this case there are only two levels, so this task is more specifically called
binary classification.

A Constant Model
Let’s start by considering the simplest model: a constant model that always predicts
one class. We use C to denote the constant model’s prediction. For our windthrow
dataset, this model will predict either C = standing or C = fallen for every input.

In classification, we want to track how often our model predicts the correct category.
For now, we simply use a count of the correct predictions. This is sometimes called
the zero-one error because the loss function takes on one of two possible values: 1
when an incorrect prediction is made and 0 for a correct prediction. For a given
observed outcome yi and prediction C, we can express this loss function as follows:

ℓ(C, y) = 0 when C matches y
1 when C is a mismatch for y

498 | Chapter 19: Classification

When we have collected data, y = [y1, …, yn], then the average loss is:

L(C, y) = 1
n ∑

i = 1

n
ℓ(C, y)

= # mismatches
n

For the constant model (see Chapter 4), the model minimizes the loss when C is set to
the most prevalent category.

In the case of the black spruce, we have the following proportions of standing and
fallen trees:

trees['status'].value_counts() / len(trees)

status
standing 0.65
fallen 0.35
Name: count, dtype: float64

So our prediction is that a tree stands, and the average loss for our dataset is 0.35.

That said, this prediction is not particularly helpful or insightful. For example, in our
EDA of the trees dataset, we saw that the size of the tree is correlated with whether the
tree stands or falls. Ideally, we could incorporate this information into the model, but
the constant model doesn’t let us do this. Let’s build some intuition for how we can
incorporate predictors into our model.

Examining the Relationship Between Size and Windthrow
We want to take a closer look at how tree size is related to windthrow. For conve‐
nience, we transform the nominal windthrow feature into a 0-1 numeric feature
where 1 stands for a fallen tree and 0 for standing:

trees['status_0_1'] = (trees['status'] == 'fallen').astype(int)
trees

 diameter storm status status_0_1
0 9.0 0.02 standing 0
1 11.0 0.03 standing 0
2 9.0 0.03 standing 0
...
656 9.0 0.94 fallen 1
657 17.0 0.94 fallen 1
658 8.0 0.98 fallen 1

659 rows × 4 columns

Modeling and Classification | 499

This representation is useful in many ways. For example, the average of status_0_1 is
the proportion of fallen trees in the dataset:

pr_fallen = np.mean(trees['status_0_1'])
print(f"Proportion of fallen black spruce: {pr_fallen:0.2f}")

Proportion of fallen black spruce: 0.35

Having this 0-1 feature also lets us make a plot to show the relationship between tree
diameter and windthrow. This is analogous to our process for linear regression,
where we make scatterplots of the outcome variable against explanatory variable(s)
(see Chapter 15).

Here we plot the tree status against the diameter, but we add a small amount of ran‐
dom noise to the status to help us see the density of 0 and 1 values at each diameter.
As before, we jitter the diameter values too and adjust the opacity of the markers to
reduce overplotting. We also add a horizontal line at the proportion of fallen trees:

This scatterplot shows that the smaller trees are more likely to be standing than the
larger trees. Notice that the average status for trees (0.35) essentially fits a constant
model to the response variable. If we consider tree diameter as an explanatory fea‐
ture, we should be able to improve the model.

A starting place might be to compute the proportion of fallen trees for different
diameters. The following block of code divides tree diameter into intervals and com‐
putes the proportion of fallen trees in each bin:

splits = [4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 20, 25, 32]
tree_bins = (
 trees["status_0_1"]
 .groupby(pd.cut(trees["diameter"], splits))
 .agg(["mean", "count"])

500 | Chapter 19: Classification

 .rename(columns={"mean": "proportion"})
 .assign(diameter=lambda df: [i.right for i in df.index])
)

We can plot these proportions against tree diameter:

The size of the markers reflects the number of trees in the diameter bin. We can use
these proportions to improve our model. For example, for a tree that is 6 cm in diam‐
eter, we would classify it as standing, whereas for a 20 cm tree, our classification
would be fallen. A natural starting place for binary classification is to model the
observed proportions and then use these proportions to classify. Next, we develop a
model for these proportions.

Modeling Proportions (and Probabilities)
Recall that when we model, we need to choose three things: a model, a loss function,
and a method to minimize the average loss on our train set. In the previous section,
we chose a constant model, the 0-1 loss, and a proof to fit the model. However, the
constant model doesn’t incorporate predictor variables. In this section, we address
this issue by introducing a new model called the logistic model.

To motivate these models, notice that the relationship between tree diameter and the
proportion of downed trees does not appear linear. For demonstration, let’s fit a sim‐
ple linear model to these data to show that it has several undesirable features. Using
the techniques from Chapter 15, we fit a linear model of tree status to diameter:

from sklearn.linear_model import LinearRegression
X = trees[['diameter']]
y = trees['status_0_1']

lin_reg = LinearRegression().fit(X, y)

Modeling Proportions (and Probabilities) | 501

Then we add this fitted line to our scatterplot of proportions:

Clearly, the model doesn’t fit the proportions well at all. There are several problems:

• The model gives proportions greater than 1 for large trees.
• The model doesn’t pick up the curvature in the proportions.
• An extreme point (such as a tree that’s 30 cm across) shifts the fitted line to the

right, away from the bulk of the data.

To address these issues, we introduce the logistic model.

A Logistic Model
The logistic model is one of the most widely used basic models for classification and a
simple extension of the linear model. The logistic function, often called the sigmoid
function, is defined as:

logistic(t) = 1
1 + exp(− t)

The sigmoid function is typically denoted by σ(t). Sadly, the Greek
letter σ is widely used to mean a lot of things in data science and
statistics, like the standard deviation, logistic function, and a per‐
mutation. You’ll have to be careful when seeing σ and use context
to understand its meaning.

502 | Chapter 19: Classification

We can plot the logistic function to reveal its s-shape (sigmoid-shape) and confirm
that it outputs numbers between 0 and 1. The function monotonically increases with
t, and large values of t get close to 1:

def logistic(t):
 return 1. / (1. + np.exp(-t))

Since the logistic function maps to the interval between 0 and 1, it is commonly used
when modeling proportions and probabilities. Also, we can write the logistic as a
function of a line, θ0 + θ1x:

σ θ0 + θ1x = 1
1 + exp(− θ0 − θ1x)

To help build your intuition for the shape of this function, the following plot shows
the logistic function as we vary θ0 and θ1:

We can see that changing the magnitude of θ1 changes the sharpness of the curve; the
farther away from 0, the steeper the curve. Flipping the sign of θ1 reflects the curve
about the vertical line x = 0. Changing θ0 shifts the curve left and right.

Modeling Proportions (and Probabilities) | 503

The logistic function can be seen as a transformation: it transforms a linear function
into a nonlinear smooth curve, and the output always lies between 0 and 1. In fact,
the output of a logistic function has a deeper probabilistic interpretation, which we
describe next.

Log Odds
Recall that the odds are the ratio p/(1 − p) for a probability p. For example, when we
toss a fair coin, the odds of getting heads are 1; for a coin that’s twice as likely to land
heads as tails (p = 2/3), the odds of getting heads are 2. The logistic model is also
called the log odds model because the logistic function coincides with a linear func‐
tion of the log odds.

We can see this in the following equations. To show this, we multiply the numerator
and denominator of the sigmoid function by exp(t):

σ(t) = 1
1 + exp(− t) = exp(t)

1 + exp(t)

(1 − σ(t)) = 1 − exp(t)
1 + exp(t) = 1

1 + exp(t)

Then we take the logarithm of the odds and simplify:

log σ(t)
1 − σ(t) = log(exp(t)) = t

So, for σ(θ0 + θ1x), we find the log odds are a linear function of x:

log
σ(θ0 + θ1x)

1 − σ(θ0 + θ1x) = log(exp(θ0 + θ1x)) = θ0 + θ1x

This representation of the logistic in terms of log odds gives a useful interpretation
for the coefficient θ1. Suppose the explanatory variable increases by 1. Then the odds
change as follows:

 odds = exp θ0 + θ1(x + 1)
= exp(θ1) × exp(θ0 + θ1x)

We see that the odds increase or decrease by a factor of exp(θ1).

504 | Chapter 19: Classification

Here, the log function is the natural logarithm. Since the natural
log is the default in data science, we typically don’t bother to write
it as ln.

Next, let’s add a logistic curve to our plot of proportions to get a sense of how well it
might fit the data.

Using a Logistic Curve
In the following plot, we’ve added a logistic curve on top of the plot of proportions of
fallen trees:

We can see that the curve follows the proportions reasonably well. In fact, we selected
this particular logistic by fitting it to the data. The fitted logistic regression is:

σ(-7.4 + 3.0x)

Now that we’ve seen that logistic curves can model probabilities well, we turn to the
process of fitting logistic curves to data. In the next section, we proceed to our second
step in modeling: selecting an appropriate loss function.

A Loss Function for the Logistic Model
The logistic model gives us probabilities (or empirical proportions), so we write our
loss function as ℓ(p, y), where p is between 0 and 1. The response takes on one of two
values because our outcome feature is a binary classification. Thus, any loss function
reduces to:

A Loss Function for the Logistic Model | 505

ℓ(p, y) = ℓ(p, 0) if y is 0
ℓ(p, 1) if y is 1

Once again, using 0 and 1 to represent the categories has an advantage because we
can conveniently write the loss as:

ℓ(p, y) = yℓ(p, y) + (1 − y)ℓ(p, 1 − y)

We encourage you to confirm this equivalence by considering the two cases y = 1 and
y = 0.

The logistic model pairs well with log loss:

ℓ(p, y) = −log(p) if y is 1
−log(1 − p) if y is 0

= − ylog(p) − (1 − y)log(1 − p)

Note that the log loss is not defined at 0 and 1 because −log(p) tends to ∞ as p
approaches 0, and similarly for −log(1 − p) as p tends to 1. We need to be careful to
avoid the end points in our minimization. We can see this in the following plot of the
two forms of the loss function:

When y is 1 (solid line), the loss is small for p near 1, and when y is 0 (dotted line),
the loss is small near 0.

If our goal is to fit a constant to the data using log loss, then the average loss is:

506 | Chapter 19: Classification

L(p, y) = 1
n ∑

i
[− yilog(p) − (1 − yi)log(1 − p)]

= −
n1
n log(p) −

n0
n log(1 − p))

Here n0 and n1 are the number of yi that are 0 and 1, respectively. We can differentiate
with respect to p to find the minimizer:

∂L(p, y)
∂p = −

n1
np +

n0
n(1 − p)

Then we set the derivative to 0 and solve for the minimizing value p̂ :

0 = −
n1

np̂
+

n0

n(1 − p̂)

0 = − p̂(1 − p̂)
n1

p̂
+ p̂(1 − p̂)

n0

(1 − p̂)
n1(1 − p̂) = n0 p̂

p̂ =
n1
n

(The final equation results from noting that n0 + n1 = n.)

To fit a more complex model based on the logistic function, we can substitute
σ(θ0 + θ1x) for p. And the loss for the logistic model becomes:

ℓ(σ(θ0 + θ1x), y) = yℓ(σ(θ0 + θ1x), y) + (1 − y)ℓ(σ(θ0 + θ1x), 1 − y)
= ylog(σ(θ0 + θ1x)) + (1 − y)log(σ(θ0 + θ1x))

Averaging the loss over the data, we arrive at:

L(θ0, θ1, x, y) = 1
n ∑

i
− yilog(σ(θ0 + θ1xi))

− (1 − yi)log(1 − σ(θ0 + θ1xi))

Unlike with squared loss, there is no closed-form solution to this loss function.
Instead, we use iterative methods like gradient descent (see Chapter 20) to minimize
the average loss. This is also one of the reasons we don’t use squared error loss for
logistic models—the average squared error is nonconvex, which makes it hard to

A Loss Function for the Logistic Model | 507

optimize. The notion of convexity is covered in greater detail in Chapter 20, and
Figure 20-4 gives a picture for intuition.

Log loss is also called logistic loss and cross-entropy loss. Another
name for it is the negative log likelihood. This name refers to the
technique of fitting models using the likelihood that a probability
distribution produced our data. We do not go any further into the
background of these alternative approaches here.

Fitting the logistic model (with the log loss) is called logistic regression. Logistic
regression is an example of a generalized linear model, a linear model with a nonlin‐
ear transformation.

We can fit logistic models with scikit-learn. The package designers made the API
very similar to fitting linear models by least squares (see Chapter 15). First, we import
the logistic regression module:

from sklearn.linear_model import LogisticRegression

Then we set up the regression problem with outcome y, the status of the tree, and
covariate X, the diameter (which we have log-transformed):

trees['log_diam'] = np.log(trees['diameter'])
X = trees[['log_diam']]
y = trees['status_0_1']

Then we fit the logistic regression and examine the intercept and coefficient for
diameter:

lr_model = LogisticRegression()
lr_model.fit(X, y)

[intercept] = lr_model.intercept_
[[coef]] = lr_model.coef_
print(f'Intercept: {intercept:.1f}')
print(f'Diameter coefficient: {coef:.1f}')

Intercept: -7.4
Diameter coefficient: 3.0

When making a prediction, the predict function returns the predicted (most likely)
class, and predict_proba returns the predicted probability. For a tree with diameter
6, we expect the prediction to be 0 (meaning standing) with a high probability. Let’s
check:

diameter6 = pd.DataFrame({'log_diam': [np.log(6)]})
[pred_prof] = lr_model.predict_proba(diameter6)
print(f'Predicted probabilities: {pred_prof}')

Predicted probabilities: [0.87 0.13]

508 | Chapter 19: Classification

Thus, the model predicts that a tree with a diameter of 6 has a 0.87 probability for the
class standing and a 0.13 probability for fallen.

Now that we’ve fit a model with one feature, we might want to see if including
another feature like the strength of the storm can improve the model. To do this, we
can fit a multiple logistic regression by adding a feature to X and fitting the model
again.

Notice that the logistic regression fits a model to predict probabilities—the model
predicts that a tree with diameter 6 has a 0.87 probability of class standing and a 0.13
probability of class fallen. Since probabilities can be any number between 0 and 1,
we need to convert the probabilities back to categories to perform classification. We
address this classification problem in the next section.

From Probabilities to Classification
We started this chapter by presenting a binary classification problem where we want
to model a nominal response variable. At this point, we have used logistic regression
to model proportions or probabilities, and we’re now ready to return to the original
problem: we use the predicted probabilities to classify records. For our example, this
means that for a tree of a particular diameter, we use the fitted coefficients from the
logistic regression to estimate the chance it is fallen. If the chance is high, we classify a
tree as fallen; otherwise, we classify it as standing. But we need to choose a threshold
for making this decision rule.

The sklearn logistic regression model’s predict function implements the basic deci‐
sion rule: predict 1 if the predicted probability p > 0.5. Otherwise, predict 0. We’ve
overlaid this decision rule on top of the model predictions as a dotted line:

From Probabilities to Classification | 509

In this section, we consider a more general decision rule. For some choice of τ, pre‐
dict 1 if the model’s predicted probability p > τ, otherwise predict 0. By default,
sklearn sets τ = 0.5. Let’s explore what happens when τ is set to other values.

Choosing an appropriate value for τ depends on our goals. Suppose we want to maxi‐
mize accuracy. The accuracy of a classifier is the fraction of correct predictions. We
can compute the accuracy for different thresholds, meaning different τ values:

def threshold_predict(model, X, threshold):
 return np.where(model.predict_proba(X)[:, 1] > threshold, 1.0, 0.0)

def accuracy(threshold, X, y):
 return np.mean(threshold_predict(lr_model, X, threshold) == y)

thresholds = np.linspace(0, 1, 200)
accs = [accuracy(t, X, y) for t in thresholds]

To understand how accuracy changes with respect to τ, we make a plot:

Notice that the threshold with the highest accuracy isn’t exactly at 0.5. In practice, we
should use cross-validation to select the threshold (see Chapter 16).

The threshold that maximizes accuracy could be a value other than 0.5 for many rea‐
sons, but a common one is class imbalance, where one category is more frequent than
another. Class imbalance can lead to a model that classifies a record as belonging to
the more common category. In extreme cases (like fraud detection) when only a tiny
fraction of the data contain a particular class, our models can achieve high accuracy
by simply always predicting the frequent class without learning what makes a good
classifier for the rare class. There are techniques for managing class imbalance,
such as:

510 | Chapter 19: Classification

• Resampling the data to reduce or eliminate the class imbalance
• Adjusting the loss function to put a larger penalty on the smaller class

In our example, the class imbalance is not that extreme, so we continue without these
adjustments.

The problem of class imbalance explains why accuracy alone is often not how we
want to judge a model. Instead, we want to differentiate between the types of correct
and incorrect classifications. We describe these next.

The Confusion Matrix
A convenient way to visualize errors in a binary classification is to look at the confu‐
sion matrix. The confusion matrix compares what the model predicts with the actual
outcomes. There are two types of error in this situation:

False positives
When the actual class is 0 (false) but the model predicts 1 (true)

False negatives
When the actual class is 1 (true) but the model predicts 0 (false)

Ideally, we would like to minimize both kinds of errors, but we often need to manage
the balance between these two sources.

The terms positive and negative come from disease testing, where a
test indicating the presence of a disease is called a positive result.
This can be a bit confusing because having a disease doesn’t seem
like something positive at all. And y = 1 denotes the “positive” case.
To keep things straight, it’s a good idea to confirm your under‐
standing of what y = 1 stands for in the context of your data.

scikit-learn has a function to compute and plot the confusion matrix:

from sklearn.metrics import confusion_matrix
mat = confusion_matrix(y, lr_model.predict(X))
mat

array([[377, 49],
 [104, 129]])

From Probabilities to Classification | 511

Ideally, we want to see all of the counts in the diagonal squares True negative and
True positive. That means we have correctly classified everything. But this is rarely
the case, and we need to assess the size of the errors. For this, it’s easier to compare
rates than counts. Next, we describe different rates and when we might prefer to pri‐
oritize one or the other.

Precision Versus Recall
In some settings, there might be a much higher cost to missing positive cases. For
example, if we are building a classifier to identify tumors, we want to make sure that
we don’t miss any malignant tumors. Conversely, we’re less concerned about classify‐
ing a benign tumor as malignant because a pathologist would still need to take a
closer look to verify the malignant classification. In this case, we want to have a high
true positive rate among the records that are actually positive. The rate is called sensi‐
tivity, or recall:

Recall = True Positives
True Positives+False Negatives = True Positives

Actually True

Higher recall runs the risk of predicting true on false records (false positives).

On the other hand, when classifying email as spam (positive) or ham (negative), we
might be annoyed if an important email gets thrown into our spam folder. In this set‐
ting, we want high precision, the accuracy of the model for positive predictions:

Precision = True Positives
True Positives+False Positives = True Positives

Predicted True

Higher-precision models are often more likely to predict that true observations are
negative (higher false-negative rate).

A common analysis compares the precision and recall at different thresholds:

512 | Chapter 19: Classification

from sklearn import metrics
precision, recall, threshold = (
 metrics.precision_recall_curve(y, lr_model.predict_proba(X)[:, 1]))

tpr_df = pd.DataFrame({"threshold":threshold,
 "precision":precision[:-1], "recall": recall[:-1], })

To see how precision and recall relate, we plot them both against the threshold τ:

Another common plot used to evaluate the performance of a classifier is the
precision-recall curve, or PR curve for short. It plots the precision-recall pairs for each
threshold:

fig = px.line(tpr_df, x="recall", y="precision",
 labels={"recall":"Recall","precision":"Precision"})
fig.update_layout(width=450, height=250, yaxis_range=[0, 1])
fig

From Probabilities to Classification | 513

Notice that the righthand end of the curve reflects the imbalance in the sample. The
precision matches the fraction of fallen trees in the sample, 0.35. Plotting multiple PR
curves for different models can be particularly useful for comparing models.

Using precision and recall gives us more control over what kinds of errors matter. As
an example, let’s suppose we want to ensure that at least 75% of the fallen trees are
classified as fallen. We can find the threshold where this occurs:

fall75_ind = np.argmin(recall >= 0.75) - 1

fall75_threshold = threshold[fall75_ind]
fall75_precision = precision[fall75_ind]
fall75_recall = recall[fall75_ind]

Threshold: 0.33
Precision: 0.59
Recall: 0.81

We find that about 41% (1 – precision) of the trees that we classify as fallen are
actually standing. In addition, we find the fraction of trees below this threshold to be:

print("Proportion of samples below threshold:",
 f"{np.mean(lr_model.predict_proba(X)[:,1] < fall75_threshold):0.2f}")

Proportion of samples below threshold: 0.52

So, we have classified 52% of the samples as standing (negative). Specificity (also
called true negative rate) measures the proportion of data belonging to the negative
class that the classifier labels as negative:

Specificity = True Negatives
True Negatives+False Positives = True Negatives

Predicted False

The specificity for our threshold is:

act_neg = (y == 0)
true_neg = (lr_model.predict_proba(X)[:,1] < fall75_threshold) & act_neg

Specificity: 0.70

In other words, 70% of the trees classified as standing are actually standing.

As we’ve seen, there are several ways to use the 2-by-2 confusion matrix. Ideally, we
want accuracy, precision, and recall to all be high. This happens when most predic‐
tions fall along the diagonal for the table, so our predictions are nearly all correct–
true negatives and true positives. Unfortunately, in most scenarios our models will
have some amount of error. In our example, trees of the same diameter include a mix
of fallen and standing, so we can’t perfectly classify trees based on their diameter. In
practice, when data scientists choose a threshold, they need to consider their context
to decide whether to prioritize precision, recall, or specificity.

514 | Chapter 19: Classification

Summary
In this chapter, we fit simple logistic regressions with one explanatory variable, but
we can easily include other variables in the model by adding more features to our
design matrix. For example, if some predictors are categorical, we can include them
as one-hot encoded features. These ideas carry over directly from Chapter 15. The
technique of regularization (Chapter 16) also applies to logistic regression. We will
integrate all of these modeling techniques—including using a train-test split to assess
the model and cross-validation to choose the threshold—in the case study in Chap‐
ter 21 that develops a model to classify fake news.

Logistic regression is a cornerstone in machine learning since it naturally extends to
more complex models. For example, logistic regression is one of the basic compo‐
nents of a neural network. When the response variable has more than two categories,
logistic regression can be extended to multinomial logistic regression. Another exten‐
sion of logistic regression for modeling counts is called Poisson regression. These dif‐
ferent forms of regression are related to maximum likelihood, where the underlying
model for the response is binomial, multinomial, or Poisson, respectively, and the
goal is to optimize the likelihood of the data over the parameters of the respective dis‐
tribution. This family of models is also known as generalized linear models. In all of
these scenarios, closed-form solutions for minimizing loss don’t exist, so optimization
of the average loss relies on numerical methods, which we cover in the next chapter.

Summary | 515

CHAPTER 20

Numerical Optimization

At this point in the book, our modeling procedure should feel familiar: we define a
model, choose a loss function, and fit the model by minimizing the average loss over
our training data. We’ve seen several techniques to minimize loss. For example, we
used both calculus and a geometric argument in Chapter 15 to find a simple expres‐
sion for fitting linear models using squared loss.

But empirical loss minimization isn’t always so straightforward. Lasso regression,
with the addition of the L1 penalty to the average squared loss, no longer has a closed-
form solution, and logistic regression uses cross-entropy loss to fit a nonlinear model.
In these cases, we use numerical optimization to fit the model, where we systemati‐
cally choose parameter values to evaluate the average loss in search of the minimizing
value.

When we introduced loss functions in Chapter 4, we performed a simple numerical
optimization to find the minimizer of the average loss. We created a grid of θ values
and evaluated the average loss at all points in the grid (see Figure 20-1). The grid
point with the smallest average loss we took as the best fit. Unfortunately, this sort of
grid search quickly becomes impractical, for the following reasons:

• For complex models with many features, the grid becomes unwieldy. With only
four features and a grid of 100 values for each feature, we must evaluate the aver‐
age loss at 1004 = 100,000,000 grid points.

• The range of parameter values to search over must be specified in advance to cre‐
ate the grid, and when we don’t have a good sense of the range, we need to start
with a wide grid and possibly repeat the grid search over narrower ranges.

• With a large number of observations, the evaluation of the average loss over the
grid points can be slow.

517

Figure 20-1. Searching over a grid of points can be computationally slow or inexact

In this chapter, we introduce numerical optimization techniques that take advantage
of the shape and smoothness of the loss function in the search for the minimizing
parameter values. We first introduce the basic idea behind the technique of gradient
descent, then we give an example and describe the properties of the loss function that
make gradient descent work, and finally, we provide a few extensions of gradient
descent.

Gradient Descent Basics
Gradient descent is based on the notion that for many loss functions, the function is
roughly linear in small neighborhoods of the parameter. Figure 20-2 gives a diagram
of the basic idea.

Figure 20-2. The technique of gradient descent moves in small increments toward the
minimizing parameter value

In the diagram, we have drawn the tangent line to the loss curve L at some point θ to
the left of the minimizing value, θ̂ . Notice that the slope of the tangent line is nega‐
tive. A short step to the right of θ to θ + s, for some small amount s, gives a point on

518 | Chapter 20: Numerical Optimization

the tangent line close to the loss at θ + s, and this loss is smaller than L(θ
~

). That is,
since the slope, b, is negative, and the tangent line approximates the loss function in a
neighborhood of θ, we have:

L(θ + s) ≈ L(θ) + b × s < L(θ)

So, taking a small step to the right of this θ decreases the loss. On the other hand, on
the other side of θ̂ in the diagram in Figure 20-2, the slope is positive, and taking a
small step to the left decreases the loss.

When we take repeated small steps in the direction indicated by whether the slope of
the tangent line is positive or negative at each new step, this leads to smaller and
smaller values of the average loss and eventually brings us to the minimizing value θ̂
(or very close to it). This is the basic idea behind gradient descent.

More formally, to minimize L(θ) for a general vector of parameters, θ, the gradient
(first-order partial derivative) determines the direction and size of the step to take. If
we write the gradient, ∇θL(θ), as simply g(θ), then gradient descent says the incre‐
ment or step is −αg(θ) for some small positive α. Then the average loss at the new
position is:

L(θ + (− αg(θ)) ≈ L(θ) − αg(θ)Tg(θ)
< L(θ)

Note that g(θ) is a p × 1 vector and g(θ)Tg(θ) is positive.

The steps in the gradient descent algorithm go as follows:

1. Choose a starting value, called θ(0) (a common choice is θ(0) = 0).

2. Compute θ(t + 1) = θ(t) − αg(θ).

3. Repeat step 2 until θ(t + 1) doesn’t change (or changes little) between iterations.

The quantity α is called the learning rate. Setting α can be tricky. It needs to be small
enough to not overshoot the minimum but large enough to arrive at the minimum in
reasonably few steps (see Figure 20-3). There are many strategies for setting α. For
example, it can be useful to decrease α over time. When α changes between iterations,
we use the notation α(t) to indicate that the learning rate varies during the search.

Gradient Descent Basics | 519

Figure 20-3. A small learning rate requires many steps to converge (left), and a large
learning rate can diverge (right); choosing the learning rate well leads to fast convergence
on the minimizing value (middle)

The gradient descent algorithm is simple yet powerful since we can use it for many
types of models and many types of loss functions. It is the computational tool of
choice for fitting many models, including linear regression on large datasets and
logistic regression. We demonstrate the algorithm to fit a constant to the bus delay
data (from Chapter 4) next.

Minimizing Huber Loss
Huber loss combines absolute loss and squared loss to get a function that is differen‐
tiable (like squared loss) and less sensitive to outliers (like absolute loss):

L(θ, y) = 1
n ∑

i = 1

n
1
2(yi − θ)2 |yi − θ | ≤ γ

γ(| yi − θ | − 1
2γ) otherwise

Since Huber loss is differentiable, we can use gradient descent. We first find the gradi‐
ent of the average Huber loss:

∇θL(θ, y) = 1
n ∑

i = 1

n −(yi − θ) |yi − θ | ≤ γ
−γ ⋅ sign(yi − θ) otherwise

We create the functions huber_loss and grad_huber_loss to compute the average
loss and its gradient. We write these functions to have signatures that enable us to
specify the parameter as well as the observed data that we average over and the transi‐
tion point of the loss function:

520 | Chapter 20: Numerical Optimization

def huber_loss(theta, dataset, gamma=1):
 d = np.abs(theta - dataset)
 return np.mean(
 np.where(d <= gamma,
 (theta - dataset)**2 / 2.0,
 gamma * (d - gamma / 2.0))
)

def grad_huber_loss(theta, dataset, gamma=1):
 d = np.abs(theta - dataset)
 return np.mean(
 np.where(d <= gamma,
 -(dataset - theta),
 -gamma * np.sign(dataset - theta))
)

Next, we write a simple implementation of gradient descent. The signature of our
function includes the loss function, its gradient, and the data to average over. We also
supply the learning rate.

def minimize(loss_fn, grad_loss_fn, dataset, alpha=0.2, progress=False):
 '''
 Uses gradient descent to minimize loss_fn. Returns the minimizing value of
 theta_hat once theta_hat changes less than 0.001 between iterations.
 '''
 theta = 0
 while True:
 if progress:
 print(f'theta: {theta:.2f} | loss: {loss_fn(theta, dataset):.3f}')
 gradient = grad_loss_fn(theta, dataset)
 new_theta = theta - alpha * gradient

 if abs(new_theta - theta) < 0.001:
 return new_theta

 theta = new_theta

Recall that the bus delays dataset consists of over 1,000 measurements of how many
minutes late the northbound C-line buses are in arriving at the stop at 3rd Avenue
and Pike Street in Seattle:

delays = pd.read_csv('data/seattle_bus_times_NC.csv')

In Chapter 4, we fit a constant model to these data for absolute loss and squared loss.
We found that absolute loss yielded the median and square the mean of the data:

print(f"Mean: {np.mean(delays['minutes_late']):.3f}")
print(f"Median: {np.median(delays['minutes_late']):.3f}")

Mean: 1.920
Median: 0.742

Minimizing Huber Loss | 521

Now we use the gradient descent algorithm to find the minimizing constant model
for Huber loss:

%%time
theta_hat = minimize(huber_loss, grad_huber_loss, delays['minutes_late'])
print(f'Minimizing theta: {theta_hat:.3f}')
print()

Minimizing theta: 0.701

CPU times: user 93 ms, sys: 4.24 ms, total: 97.3 ms
Wall time: 140 ms

The optimizing constant for Huber loss is close to the value that minimizes absolute
loss. This comes from the shape of the Huber loss function. It is linear in the tails and
so is not affected by outliers like with absolute loss and unlike with squared loss.

We wrote our minimize function to demonstrate the idea behind
the algorithm. In practice, you will want to use well-tested, numeri‐
cally sound implementations of an optimization algorithm. For
example, the scipy package has a minimize method that we can
use to find the minimizer of average loss, and we don’t even need to
compute the gradient. This algorithm is likely to be much faster
than any one that we might write. In fact, we used it in Chapter 18
when we created our own asymmetric modification of quadratic
loss for the special case where we wanted the loss to be greater for
errors on one side of the minimum than the other.

More generally, we typically stop the algorithm when θ(t) doesn’t change much
between iterations. In our function, we stop when θ(t + 1) − θ(t) is less than 0.001. It is
also common to stop the search after a large number of steps, such as 1,000. If the
algorithm has not arrived at the minimizing value after 1,000 iterations, then the
algorithm might be diverging because the learning rate is too large or the minimum
might exist in the limit at ±∞.

Gradient descent gives us a general way to minimize average loss when we cannot
easily solve for the minimizing value analytically or when the minimization is com‐
putationally expensive. The algorithm relies on two important properties of the aver‐
age loss function: it is both convex and differentiable in θ. We discuss how the
algorithm relies on these properties next.

Convex and Differentiable Loss Functions
As its name suggests, the gradient descent algorithm requires the function being
minimized to be differentiable. The gradient, ∇θL(θ), allows us to make a linear
approximation to the average loss in small neighborhoods of θ. This approximation

522 | Chapter 20: Numerical Optimization

gives us the direction (and size) of the step, and as long as we don’t overshoot the
minimum, θ̂ , we are bound to eventually reach it. Well, as long as the loss function is
also convex.

The step-by-step search for the minimum also relies on the loss function being con‐
vex. The function in the diagram on the left in Figure 20-4 is convex, but the function
on the right is not. The function on the right has a local minimum, and depending on
where the algorithm starts, it might converge to this local minimum and miss the real
minimum entirely. The property of convexity avoids this problem. A convex function
avoids the problem of local minima. So, with an appropriate step size, gradient
descent finds the globally optimal θ for any convex, differentiable function.

Figure 20-4. With nonconvex functions (right), gradient descent might locate a local
minimum rather than a global minimum, which is not possible with convex functions
(left)

Formally, a function f is convex if for any two input values, θa and θb, and any q
between 0 and 1:

q f (θa) + (1 − q) f (θb) ≥ f (qθa + (1 − q)θb)

This inequality implies that any line segment that connects two points of the function
must reside on or above the function itself. Heuristically, this means that whenever
we take a small enough step to the right when the gradient is negative or to the left
when the gradient is positive, we will head in the direction of the function’s
minimum.

The formal definition of convexity gives us a precise way to determine whether a
function is convex. And we can use this definition to connect the convexity of the
average loss L(θ) to the loss function � (θ). We have so far in this chapter simplified
the representation of L(θ) by not mentioning the data. Recall:

L(θ, X, y) = 1
n ∑

i = 1

n
� (θ, xi, yi)

Convex and Differentiable Loss Functions | 523

where X is an n × p design matrix and xi is the ith row of the design matrix, which
corresponds to the ith observation in the dataset. This means that the gradient can be
expressed as follows:

∇θL(θ, X, y) = 1
n ∑

i = 1

n
∇θ� (θ, xi, yi)

If � (θ, x� , ��) is a convex function of θ, then the average loss is also convex. And simi‐
larly for the derivative: the derivative of � (θ, x� , ��) is averaged over the data to evalu‐
ate the derivative of L(θ, X, y). We walk through a proof of the convexity property in
the exercises.

Now, with a large amount of data, calculating θ(t) can be computationally expensive
since it involves the average of the gradient ∇θ� over all the (xi, yi). We next consider
variants of gradient descent that can be computationally faster because they don’t
average over all of the data.

Variants of Gradient Descent
Two variants of gradient descent, stochastic gradient descent and mini-batch gradient
descent, use subsets of the data when computing the gradient of the average loss and
are useful for optimization problems with large datasets. A third alternative, Newton’s
method, assumes the loss function is twice differentiable and uses a quadratic approx‐
imation to the loss function, rather than the linear approximation used in gradient
descent.

Recall that gradient descent takes steps based on the gradient. At step t, we move
from θ(t) to:

θ(t + 1) = θ(t) − α ⋅ ∇θL(θ(t), X, y)

And since ∇θL(θ, X, y) can be expressed as the average gradient of the loss function � ,
we have:

∇θL(θ, X, y) = 1
n ∑

i = 1

n
∇θ� (θ, xi, yi)

This representation of the gradient of the average loss in terms of the average of the
gradient of loss at each point in the data shows why the algorithm is also called batch
gradient descent. Two variants to batch gradient descent use smaller amounts of the

524 | Chapter 20: Numerical Optimization

data rather than the complete “batch.” The first, stochastic gradient descent, uses only
one observation in each step of the algorithm.

Stochastic Gradient Descent
Although batch gradient descent can often find an optimal θ in relatively few itera‐
tions, each iteration can take a long time to compute if the dataset contains many
observations. To get around this difficulty, stochastic gradient descent approximates
the overall gradient by a single, randomly chosen data point. Since this observation is
chosen randomly, we expect that using the gradient at randomly chosen observations
will, on average, move in the correct direction and so eventually converge to the min‐
imizing parameter.

In short, to conduct stochastic gradient descent, we replace the average gradient with
the gradient at a single data point. So, the updated formula is just:

θ(t + 1) = θ(t) − α ⋅ ∇θ� (θ(t), xi, yi)

In this formula, the ith observations (xi, yi) are chosen randomly from the data.
Choosing the points randomly is critical to the success of stochastic gradient descent.
If the points are not chosen randomly, the algorithm may produce significantly worse
results than batch gradient descent.

We most commonly run stochastic gradient descent by randomly shuffling all of the
data points and using each point in its shuffled order until we complete one entire
pass through the data. If the algorithm hasn’t converged yet, then we reshuffle the
points and run another pass through the data. Each iteration of stochastic gradient
descent looks at one data point; each complete pass through the data is called an
epoch.

Since stochastic descent only examines a single data point at a time, at times it takes
steps away from the minimizer, θ̂ , but on average these steps are in the right direc‐
tion. And since the algorithm computes an update much more quickly than batch
gradient descent, it can make significant progress toward the optimal θ̂ by the time
batch gradient descent finishes a single update.

Mini-Batch Gradient Descent
As its name suggests, mini-batch gradient descent strikes a balance between batch gra‐
dient descent and stochastic gradient descent by increasing the number of observa‐
tions selected at random in each iteration. In mini-batch gradient descent, we average
the gradient of the loss function at a few data points instead of at a single point or all

Variants of Gradient Descent | 525

the points. We let ℬ represent the mini-batch of data points that are randomly sam‐
pled from the dataset, and we define the algorithm’s next step as:

θ(t + 1) = θ(t) − α ⋅ 1
|ℬ| ∑

i ∈ ℬ
∇θ� (θ, xi, yi)

As with stochastic gradient descent, we perform mini-batch gradient descent by ran‐
domly shuffling the data. Then we split the data into consecutive mini-batches and
iterate through the batches in sequence. After each epoch, we reshuffle our data and
select new mini-batches.

While we have made the distinction between stochastic and mini-batch gradient
descent, stochastic gradient descent is sometimes used as an umbrella term that
encompasses the selection of a mini-batch of any size.

Another common optimization technique is Newton’s method.

Newton’s Method
Newton’s method uses the second derivative to optimize the loss. The basic idea is to
approximate the average loss, L(θ), in small neighborhoods of θ, with a quadratic
curve rather than a linear approximation. The approximation looks as follows for a
small step s:

L(θ + s) ≈ L(θ) + g(θ)Ts + 1
2sTH(θ)s

where g(θ) = ∇θL(θ) is the gradient and H(θ) = ∇θ
2L(θ) is the Hessian of L(θ). More

specifically, H is a p × p matrix of second-order partial derivatives in θ with i, j
elements:

Hi, j = ∂2�
∂θi∂θ j

This quadratic approximation to L(θ + s) has a minimum at s = − [H−1(θ)]g(θ).
(Convexity implies that H is a symmetric square matrix that can be inverted.) Then a
step in the algorithm moves from θ(t) to:

θ(t + 1) = θ(t) + 1
n ∑

i = 1

n
− [H−1(θ(t)]g(θ(t))

Figure 20-5 gives the idea behind Newton’s method of optimization.

526 | Chapter 20: Numerical Optimization

Figure 20-5. Newton’s method uses a local quadratic approximation to the curve to take
steps toward the minimizing value of a convex, twice-differentiable function

This technique converges quickly if the approximation is accurate and the steps are
small. Otherwise, Newton’s method can diverge, which often happens if the function
is nearly flat in a dimension. When the function is relatively flat, the derivative is near
zero and its inverse can be quite large. Large steps can move to θ that are far from
where the approximation is accurate. (Unlike with gradient descent, there is no learn‐
ing rate that keeps steps small.)

Summary
In this chapter, we introduced several techniques for numerical optimization that take
advantage of the shape and smoothness of the loss function in the search for the min‐
imizing parameter values. We first introduced gradient descent, which relies on the
differentiability of loss function. Gradient descent, also called batch gradient descent,
iteratively improves model parameters until the model achieves minimal loss. Since
batch gradient descent is computationally intractable with large datasets, we often
instead use stochastic gradient descent to fit models.

Mini-batch gradient descent is most optimal when running on a graphical processing
unit (GPU) chip found in some computers. Since computations on these types of
hardware can be executed in parallel, using a mini-batch can increase the accuracy of
the gradient without increasing computation time. Depending on the memory size of
the GPU, the mini-batch size is often set between 10 and 100 observations.

Alternatively, if the loss function is twice differentiable, then Newton’s method can
converge very quickly, even though it is more expensive to compute one step in the
iteration. A hybrid approach is also popular, beginning with gradient descent (of
some kind) and then switching the algorithm to Newton’s method. This approach can
avoid divergence and be faster than gradient descent alone. Typically, the second-
order approximation used by Newton’s method is more appropriate near the opti‐
mum and converges quickly.

Summary | 527

Lastly, another option is to set the step size adaptively. Additionally, setting different
learning rates for different features can be important if they are of different scale or
vary in frequency. For example, word counts can differ a lot across common words
and rare words.

The logistic regression model introduced in Chapter 19 is fitted using numerical opti‐
mization methods like those described in this chapter. We wrap up with one final case
study that uses logistic regression to fit a complex model with thousands of features.

528 | Chapter 20: Numerical Optimization

CHAPTER 21

Case Study: Detecting Fake News

Fake news—false information created in order to deceive others—is an important
issue because it can harm people. For example, the social media post in Figure 21-1
confidently stated that hand sanitizer doesn’t work on coronaviruses. Though factu‐
ally incorrect, it spread through social media anyway: it was shared nearly 100,000
times and was likely seen by millions of people.

Figure 21-1. A popular post on Twitter from March 2020 falsely claimed that sanitizer
doesn’t kill coronaviruses

529

We might wonder whether we can automatically detect fake news without having to
read the stories. For this case study, we go through the steps of the data science lifecy‐
cle. We start by refining our research question and obtaining a dataset of news articles
and labels. Then we wrangle and transform the data. Next, we explore the data to
understand its content and devise features to use for modeling. Finally, we build
models using logistic regression to predict whether news articles are real or fake, and
evaluate their performance.

We’ve included this case study because it lets us reiterate several important ideas in
data science. First, natural language data appear often, and even basic techniques can
enable useful analyses. Second, model selection is an important part of data analysis,
and in this case study we apply what we’ve learned about cross-validation, the bias-
variance trade-off, and regularization. Finally, even models that perform well on the
test set might have inherent limitations when we try to use them in practice, as we
will soon see.

Let’s start by refining our research question and understanding the scope of our data.

Question and Scope
Our initial research question is: can we automatically detect fake news? To refine this
question, we consider the kind of information that we might use to build a model for
detecting fake news. If we have hand-classified news stories where people have read
each story and determined whether it is fake or not, then our question becomes: can
we build a model to accurately predict whether a news story is fake based on its
content?

To address this question, we can use the FakeNewsNet data repository as described in
Shu et al. This repository contains content from news and social media websites, as
well as metadata like user engagement metrics. For simplicity, we only look at the
dataset’s political news articles. This subset of the data includes only articles that were
fact-checked by Politifact, a nonpartisan organization with a good reputation. Each
article in the dataset has a “real” or “fake” label based on Politifact’s evaluation, which
we use as the ground truth.

Politifact uses a nonrandom sampling method to select articles to fact-check. Accord‐
ing to its website, Politifact’s journalists select the “most newsworthy and significant”
claims each day. Politifact started in 2007 and the repository was published in 2020,
so most of the articles were published between 2007 and 2020.

Summarizing this information, we determine that the target population consists of all
political news stories published online in the time period from 2007 to 2020 (we
would also want to list the sources of the stories). The access frame is determined by
Politifact’s identification of the most newsworthy claims of the day. So the main sour‐
ces of bias for this data include:

530 | Chapter 21: Case Study: Detecting Fake News

https://arxiv.org/abs/1809.01286
https://www.politifact.com

Coverage bias
The news outlets are limited to those that Politifact monitored, which may miss
arcane or short-lived sites.

Selection bias
The data are limited to articles Politifact decided were interesting enough to fact-
check, which means that articles might skew toward ones that are both widely
shared and controversial.

Measurement bias
Whether a story should be labeled “fake” or “real” is determined by one organiza‐
tion (Politifact) and reflects the biases, unintentional or otherwise, that the orga‐
nization has in its fact-checking methodology.

Drift
Since we only have articles published between 2007 and 2020, there is likely to be
drift in the content. Topics are popularized and faked in rapidly evolving news
trends.

We will keep these limitations of the data in mind as we begin to wrangle the data
into a form that we can analyze.

Obtaining and Wrangling the Data
Let’s get the data into Python using the GitHub page for FakeNewsNet. Reading over
the repository description and code, we find that the repository doesn’t actually store
the news articles itself. Instead, running the repository code will scrape news articles
from online web pages directly (using techniques we covered in Chapter 14). This
presents a challenge: if an article is no longer available online, it likely will be missing
from our dataset. Noting this, let’s proceed with downloading the data.

The FakeNewsNet code highlights one challenge in reproducible
research—online datasets change over time, but it can be difficult
(or even illegal) to store and share copies of this data. For example,
other parts of the FakeNewsNet dataset use Twitter posts, but the
dataset creators would violate Twitter’s terms and services if they
stored copies of the posts in their repository. When working with
data gathered from the web, we suggest documenting the date the
data were gathered and reading the terms and services of the data
sources carefully.

Running the script to download the Politifact data takes about an hour. After that, we
place the datafiles into the data/politifact folder. The articles that Politifact labeled as
fake and real are in data/politifact/fake and data/politifact/real. Let’s take a look at one
of the articles labeled “real”:

Obtaining and Wrangling the Data | 531

https://oreil.ly/0DOHd

!ls -l data/politifact/real | head -n 5

total 0
drwxr-xr-x 2 sam staff 64 Jul 14 2022 politifact100
drwxr-xr-x 3 sam staff 96 Jul 14 2022 politifact1013
drwxr-xr-x 3 sam staff 96 Jul 14 2022 politifact1014
drwxr-xr-x 2 sam staff 64 Jul 14 2022 politifact10185
ls: stdout: Undefined error: 0

!ls -lh data/politifact/real/politifact1013/

total 16
-rw-r--r-- 1 sam staff 5.7K Jul 14 2022 news content.json

Each article’s data is stored in a JSON file named news content.json. Let’s load the
JSON for one article into a Python dictionary (see Chapter 14):

import json
from pathlib import Path

article_path = Path('data/politifact/real/politifact1013/news content.json')
article_json = json.loads(article_path.read_text())

Here, we’ve displayed the keys and values in article_json as a table:

 value

key
url http://www.senate.gov/legislative/LIS/roll_cal...
text Roll Call Vote 111th Congress - 1st Session\n\...
images [http://statse.webtrendslive.com/dcs222dj3ow9j...
top_img http://www.senate.gov/resources/images/us_sen.ico
keywords []
authors []
canonical_link
title U.S. Senate: U.S. Senate Roll Call Votes 111th...
meta_data {'viewport’: ‘width=device-width, initial-scal...
movies []
publish_date None
source http://www.senate.gov
summary

There are many fields in the JSON file, but for this analysis we only look at a few that
are primarily related to the content of the article: the article’s title, text content, URL,
and publication date. We create a dataframe where each row represents one article
(the granularity in a news story). To do this, we load in each available JSON file as a
Python dictionary, and then extract the fields of interest to store as a pandas Data
Frame named df_raw:

532 | Chapter 21: Case Study: Detecting Fake News

from pathlib import Path

def df_row(content_json):
 return {
 'url': content_json['url'],
 'text': content_json['text'],
 'title': content_json['title'],
 'publish_date': content_json['publish_date'],
 }

def load_json(folder, label):
 filepath = folder / 'news content.json'
 data = df_row(json.loads(filepath.read_text())) if filepath.exists() else {}
 return {
 **data,
 'label': label,
 }

fakes = Path('data/politifact/fake')
reals = Path('data/politifact/real')

df_raw = pd.DataFrame([load_json(path, 'fake') for path in fakes.iterdir()] +
 [load_json(path, 'real') for path in reals.iterdir()])

df_raw.head(2)

 url text title publish_date label

0 dailybuzzlive.com/
cannibals-arrested-
florida/

Police in Vernal Heights, Florida,
arrested 3-...

Cannibals Arrested in Florida
Claim Eating Hum...

1.62e+09 fake

1 https://
web.archive.org/web/
20171228192703/htt...

WASHINGTON — Rod Jay
Rosenstein, Deputy Attorn...

BREAKING: Trump fires Deputy
Attorney General ...

1.45e+09 fake

Exploring this dataframe reveals some issues we’d like to address before we begin the
analysis. For example:

• Some articles couldn’t be downloaded. When this happened, the url column
contains NaN.

• Some articles don’t have text (such as a web page with only video content). We
drop these articles from our dataframe.

• The publish_date column stores timestamps in Unix format (seconds since the
Unix epoch), so we need to convert them to pandas.Timestamp objects.

• We are interested in the base URL of a web page. However, the source field in the
JSON file has many missing values compared to the url column, so we must
extract the base URL using the full URL in the url column. For example, from
dailybuzzlive.com/cannibals-arrested-florida/ we get dailybuzzlive.com.

Obtaining and Wrangling the Data | 533

• Some articles were downloaded from an archival website (web.archive.org).
When this happens, we want to extract the actual base URL from the original by
removing the web.archive.org prefix.

• We want to concatenate the title and text columns into a single content col‐
umn that contains all of the text content of the article.

We can tackle these data issues using a combination of pandas functions and regular
expressions:

import re

[1], [2]
def drop_nans(df):
 return df[~(df['url'].isna() |
 (df['text'].str.strip() == '') |
 (df['title'].str.strip() == ''))]

[3]
def parse_timestamps(df):
 timestamp = pd.to_datetime(df['publish_date'], unit='s', errors='coerce')
 return df.assign(timestamp=timestamp)

[4], [5]
archive_prefix_re = re.compile(r'https://web.archive.org/web/\d+/')
site_prefix_re = re.compile(r'(https?://)?(www\.)?')
port_re = re.compile(r':\d+')

def url_basename(url):
 if archive_prefix_re.match(url):
 url = archive_prefix_re.sub('', url)
 site = site_prefix_re.sub('', url).split('/')[0]
 return port_re.sub('', site)

[6]
def combine_content(df):
 return df.assign(content=df['title'] + ' ' + df['text'])

def subset_df(df):
 return df[['timestamp', 'baseurl', 'content', 'label']]

df = (df_raw
 .pipe(drop_nans)
 .reset_index(drop=True)
 .assign(baseurl=lambda df: df['url'].apply(url_basename))
 .pipe(parse_timestamps)
 .pipe(combine_content)
 .pipe(subset_df)
)

After data wrangling, we end up with the following dataframe named df:

534 | Chapter 21: Case Study: Detecting Fake News

df.head(2)

 timestamp baseurl content label
0 2021-04-05 16:39:51 dailybuzzlive.com Cannibals Arrested in Florida Claim Eating Hum... fake
1 2016-01-01 23:17:43 houstonchronicle-tv.com BREAKING: Trump fires Deputy Attorney General ... fake

Now that we’ve loaded and cleaned the data, we can proceed to exploratory data
analysis.

Exploring the Data
The dataset of news articles we’re exploring is just one part of the larger FakeNewsNet
dataset. As such, the original paper doesn’t provide detailed information about our
subset of data. So, to better understand the data, we must explore it ourselves.

Before starting exploratory data analysis, we apply our standard practice of splitting
the data into training and test sets. We perform EDA using only the train set:

from sklearn.model_selection import train_test_split

df['label'] = (df['label'] == 'fake').astype(int)

X_train, X_test, y_train, y_test = train_test_split(
 df[['timestamp', 'baseurl', 'content']], df['label'],
 test_size=0.25, random_state=42,
)

X_train.head(2)

 timestamp baseurl content
164 2019-01-04 19:25:46 worldnewsdailyreport.com Chinese lunar rover finds no evidence of Ameri...
28 2016-01-12 21:02:28 occupydemocrats.com Virginia Republican Wants Schools To Check Chi...

Let’s count the number of real and fake articles in the train set:

y_train.value_counts()

label
0 320
1 264
Name: count, dtype: int64

Our train set has 584 articles, and there are about 60 more articles labeled real than
fake. Next, we check for missing values in the three fields:

X_train.info()

<class 'pandas.core.frame.DataFrame'>
Index: 584 entries, 164 to 102
Data columns (total 3 columns):

Exploring the Data | 535

 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 timestamp 306 non-null datetime64[ns]
 1 baseurl 584 non-null object
 2 content 584 non-null object
dtypes: datetime64[ns](1), object(2)
memory usage: 18.2+ KB

Nearly half of the timestamps are null. This feature will limit the dataset if we use it in
the analysis. Let’s take a closer look at the baseurl, which represents the website that
published the original article.

Exploring the Publishers
To understand the baseurl column, we start by counting the number of articles from
each website:

X_train['baseurl'].value_counts()

baseurl
whitehouse.gov 21
abcnews.go.com 20
nytimes.com 17
 ..
occupydemocrats.com 1
legis.state.ak.us 1
dailynewsforamericans.com 1
Name: count, Length: 337, dtype: int64

Our train set has 584 rows, and we have found that there are 337 unique publishing
websites. This means that the dataset includes many publications with only a few arti‐
cles. A histogram of the number of articles published by each website confirms this:

fig = px.histogram(X_train['baseurl'].value_counts(), width=450, height=250,
 labels={"value": "Number of articles published at a URL"})

fig.update_layout(showlegend=False)

536 | Chapter 21: Case Study: Detecting Fake News

This histogram shows that the vast majority (261 out of 337) of websites have only
one article in the train set, and only a few websites have more than five articles in the
train set. Nonetheless, it can be informative to identify the websites that published the
most fake or real articles. First, we find the websites that published the most fake
articles:

Next, we list the websites that published the greatest number of real articles:

Exploring the Data | 537

Only cnn.com and washingtonpost.com appear on both lists. Even without knowing
the total number of articles for these sites, we might expect that an article from your
newswire.com is more likely to be labeled as fake, while an article from white
house.gov is more likely to be labeled as real. That said, we don’t expect that using
the publishing website to predict article truthfulness would work very well; there are
simply too few articles from most of the websites in the dataset.

Next, let’s explore the timestamp column, which records the publication date of the
news articles.

Exploring Publication Date
Plotting the timestamps on a histogram shows that most articles were published after
2000, although there seems to be at least one article published before 1940:

fig = px.histogram(
 X_train["timestamp"],
 labels={"value": "Publication year"}, width=550, height=250,
)
fig.update_layout(showlegend=False)

538 | Chapter 21: Case Study: Detecting Fake News

When we take a closer look at the news articles published prior to 2000, we find that
the timestamps don’t match the actual publication date of the article. These date
issues are most likely related to the web scraper collecting inaccurate information
from the web pages. We can zoom into the region of the histogram after 2000:

fig = px.histogram(
 X_train.loc[X_train["timestamp"] > "2000", "timestamp"],
 labels={"value": "Publication year"}, width=550, height=250,
)
fig.update_layout(showlegend=False)

As expected, most of the articles were published between 2007 (the year Politifact was
founded) and 2020 (the year the FakeNewsNet repository was published). But we also
find that the timestamps are concentrated on the years 2016 to 2018—the year of the
controversial 2016 US presidential election and the two years following. This insight
is a further caution on the limitation of our analysis to carry over to nonelection
years.

Exploring the Data | 539

Our main aim is to use the text content for classification. We explore some word fre‐
quencies next.

Exploring Words in Articles
We’d like to see whether there’s a relationship between the words used in the articles
and whether the article was labeled as fake. One simple way to do this is to look at
individual words like military, then count how many articles that mentioned “mili‐
tary” were labeled fake. For military to be useful, the articles that mention it should
have a much higher or much lower fraction of fake articles than 45% (the proportion
of fake articles in the dataset: 264/584).

We can use our domain knowledge of political topics to pick out a few candidate
words to explore:

word_features = [
 # names of presidential candidates
 'trump', 'clinton',
 # congress words
 'state', 'vote', 'congress', 'shutdown',

 # other possibly useful words
 'military', 'princ', 'investig', 'antifa',
 'joke', 'homeless', 'swamp', 'cnn', 'the'
]

Then we define a function that creates a new feature for each word, where the feature
contains True if the word appeared in the article and False if not:

def make_word_features(df, words):
 features = { word: df['content'].str.contains(word) for word in words }
 return pd.DataFrame(features)

This is like one-hot encoding for the presence of a word (see Chapter 15). We can use
this function to further wrangle our data and create a new dataframe with a feature
for each of our chosen words:

df_words = make_word_features(X_train, word_features)
df_words["label"] = df["label"]

df_words.shape

(584, 16)

df_words.head(4)

540 | Chapter 21: Case Study: Detecting Fake News

 trump clinton state vote ... swamp cnn the label
164 False False True False ... False False True 1
28 False False False False ... False False True 1
708 False False True True ... False False True 0
193 False False False False ... False False True 1

4 rows × 16 columns

Now we can find the proportion of these articles that were labeled fake. We visualize
these calculations in the following plots. In the left plot, we mark the proportion of
fake articles in the entire train set using a dotted line, which helps us understand
how informative each word feature is—a highly informative word will have a point
that lies far away from the line:

This plot reveals a few interesting considerations for modeling. For example, notice
that the word antifa is highly predictive—all articles that mention the word antifa are
labeled fake. However, antifa only appears in a few articles. On the other hand, the
word the appears in nearly every article, but is uninformative for distinguishing
between real and fake articles because the proportion of articles with the that are
fake matches the proportion of fake articles overall. We might instead do better with a
word like vote, which is predictive and appears in many news articles.

This exploratory analysis brought us understanding of the time frame that our news
articles were published in, the broad range of publishing websites captured in the
data, and candidate words to use for prediction. Next, we fit models for predicting
whether articles are fake or real.

Exploring the Data | 541

Modeling
Now that we’ve obtained, cleaned, and explored our data, let’s fit models to predict
whether articles are real or fake. In this section, we use logistic regression because we
have a binary classification problem. We fit three different models that increase in
complexity. First, we fit a model that just uses the presence of a single handpicked
word in the document as an explanatory feature. Then we fit a model that uses multi‐
ple handpicked words. Finally, we fit a model that uses all the words in the train set,
vectorized using the tf-idf transform (introduced in Chapter 13). Let’s start with the
simple single-word model.

A Single-Word Model
Our EDA showed that the word vote is related to whether an article is labeled real or
fake. To test this, we fit a logistic regression model using a single binary feature: 1 if
the word vote appears in the article and 0 if not. We start by defining a function to
lowercase the article content:

def lowercase(df):
 return df.assign(content=df['content'].str.lower())

For our first classifier, we only use the word vote:

one_word = ['vote']

We can chain the lowercase function and the function make_word_features from
our EDA into a scikit-learn pipeline. This provides a convenient way to transform
and fit data all at once:

from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegressionCV
from sklearn.preprocessing import FunctionTransformer

model1 = make_pipeline(
 FunctionTransformer(lowercase),
 FunctionTransformer(make_word_features, kw_args={'words': one_word}),
 LogisticRegressionCV(Cs=10, solver='saga', n_jobs=4, max_iter=10000),
)

When used, the preceding pipeline converts the characters in the article content to
lowercase, creates a dataframe with a binary feature for each word of interest, and fits
a logistic regression model on the data using L2 regularization. Additionally, the
LogisticRegressionCV function uses cross-validation (fivefold by default) to select
the best regularization parameter. (See Chapter 16 for more on regularization and
cross-validation.)

542 | Chapter 21: Case Study: Detecting Fake News

Let’s use the pipeline to fit the training data:

%%time

model1.fit(X_train, y_train)
print(f'{model1.score(X_train, y_train):.1%} accuracy on training set.')

64.9% accuracy on training set.
CPU times: user 110 ms, sys: 42.7 ms, total: 152 ms
Wall time: 144 ms

Overall, the single-word classifier only classifies 65% of articles correctly. We plot the
confusion matrix of the classifier on the train set to see what kinds of mistakes it
makes:

Our model often misclassifies real articles (0) as fake (1). Since this model is simple,
we can take a look at the probabilities for the two cases: the word vote is in the article
or is not:

"vote" present: [[0.72 0.28]]
"vote" absent: [[0.48 0.52]]

When an article contains the word vote, the model gives a high probability of the arti‐
cle being real, and when vote is absent, the probability leans slightly toward the article
being fake. We encourage readers to verify this for themselves using the definition of
the logistic regression model and the fitted coefficients:

print(f'Intercept: {log_reg.intercept_[0]:.2f}')
[[coef]] = log_reg.coef_
print(f'"vote" Coefficient: {coef:.2f}')

Intercept: 0.08
"vote" Coefficient: -1.00

Modeling | 543

As we saw in Chapter 19, the coefficient indicates the size of the change in the odds
with a change in the explanatory variable. With a 0-1 variable like the presence or
absence of a word in an article, this has a particularly intuitive meaning. For an article
with vote in it, the odds of being fake decrease by a factor of exp(θvote), which is:

np.exp(coef)

0.36836305405149367

Remember that in this modeling scenario, a label of 0 corresponds
to a real article and a label of 1 corresponds to a fake article. This
might seem a bit counterintuitive—we’re saying that a “true posi‐
tive” is when a model correctly predicts a fake article as fake. In
binary classification, we typically say a “positive” result is the one
with the presence of something unusual. For example, a person
who tests positive for an illness would expect to have the illness.

Let’s make our model a bit more sophisticated by introducing additional word
features.

Multiple-Word Model
We create a model that uses all of the words we examined in our EDA of the train set,
except for the. Let’s fit a model using these 15 features:

model2 = make_pipeline(
 FunctionTransformer(lowercase),
 FunctionTransformer(make_word_features, kw_args={'words': word_features}),
 LogisticRegressionCV(Cs=10, solver='saga', n_jobs=4, max_iter=10000),
)

%%time

model2.fit(X_train, y_train)
print(f'{model2.score(X_train, y_train):.1%} accuracy on training set.')

74.8% accuracy on training set.
CPU times: user 1.54 s, sys: 59.1 ms, total: 1.6 s
Wall time: 637 ms

This model is about 10 percentage points more accurate than the one-word model. It
may seem a bit surprising that going from a one-word model to a 15-word model
only gains 10 percentage points. The confusion matrix is helpful in teasing out the
kinds of errors made:

544 | Chapter 21: Case Study: Detecting Fake News

We can see that this classifier does a better job of classifying real articles accurately.
However, it makes more mistakes than the simple one-word model when classifying
fake article—59 of the fake articles were classified as real. In this scenario, we might
be more concerned about misclassifying an article as fake when it is real. So we wish
to have a high precision—the ratio of fake articles correctly predicted as fake to arti‐
cles predicted as fake:

model1_precision = 238 / (238 + 179)
model2_precision = 205 / (205 + 88)

[round(num, 2) for num in [model1_precision, model2_precision]]

[0.57, 0.7]

The precision in our larger model is improved, but about 30% of the articles labeled
as fake are actually real. Let’s take a look at the model’s coefficients:

Modeling | 545

We can make a quick interpretation of the coefficients by looking at their signs. The
large positive values on trump and investig indicate that the model predicts that new
articles containing these words have a higher probability of being fake. The reverse is
true for words like congress and vote, which have negative weights. We can use these
coefficients to compare the log odds when an article does or does not contain a par‐
ticular word.

Although this larger model performs better than the simple one-word model, we had
to handpick the word features using our knowledge of the news. What if we missed
the words that are highly predictive? To address this, we can incorporate all the words
in the articles using the tf-idf transform.

Predicting with the tf-idf Transform
For the third and final model, we use the term frequency-inverse document fre‐
quency (tf-idf) transform from Chapter 13 to vectorize the entire text of all articles in
the train set. Recall that with this transform, an article is converted into a vector with
one element for each word that appears in any of the 564 articles. The vector consists
of normalized counts of the number of times the word appears in the article normal‐
ized by the rareness of the word. The tf-idf puts more weight on words that only
appear in a few documents. This means that our classifier uses all the words in the
train set’s news articles for prediction. As we’ve done previously when we introduced
tf-idf, first we remove stopwords, then we tokenize the words, and then we use the
TfidfVectorizer from scikit-learn:

tfidf = TfidfVectorizer(tokenizer=stemming_tokenizer, token_pattern=None)

from sklearn.compose import make_column_transformer

model3 = make_pipeline(
 FunctionTransformer(lowercase),
 make_column_transformer((tfidf, 'content')),
 LogisticRegressionCV(Cs=10,
 solver='saga',
 n_jobs=8,
 max_iter=1000),
 verbose=True,
)

%%time

model3.fit(X_train, y_train)
print(f'{model3.score(X_train, y_train):.1%} accuracy on training set.')

[Pipeline] (step 1 of 3) Processing functiontransformer, total= 0.0s
[Pipeline] . (step 2 of 3) Processing columntransformer, total= 14.5s
[Pipeline] (step 3 of 3) Processing logisticregressioncv, total= 6.3s
100.0% accuracy on training set.

546 | Chapter 21: Case Study: Detecting Fake News

CPU times: user 50.2 s, sys: 508 ms, total: 50.7 s
Wall time: 34.2 s

We find that this model achieves 100% accuracy on the train set. We can take a look
at the tf-idf transformer to better understand the model. Let’s start by finding out
how many unique tokens the classifier uses:

tfidf = model3.named_steps.columntransformer.named_transformers_.tfidfvectorizer
n_unique_tokens = len(tfidf.vocabulary_.keys())
print(f'{n_unique_tokens} tokens appeared across {len(X_train)} examples.')

23800 tokens appeared across 584 examples.

This means that our classifier has 23,812 features, a large increase from our previous
model, which only had 15. Since we can’t display that many model weights, we display
the 10 most negative and 10 most positive weights:

Modeling | 547

These coefficients show a few quirks about this model. We see that several influential
features correspond to punctuation in the original text. It’s unclear whether we should
clean out the punctuation in the model. On the one hand, punctuation doesn’t seem
to convey as much meaning as words do. On the other, it seems plausible that, for
example, lots of exclamation points in an article could help a model decide whether
the article is real or fake. In this case, we’ve decided to keep punctuation, but curious
readers can repeat this analysis after stripping the punctuation out to see how the
resulting model is affected.

We conclude by displaying the test set error for all three models:

 test set error
model1 0.61
model2 0.70
model3 0.88

As we might expect, the models became more accurate as we introduced more fea‐
tures. The model that used tf-idf performed much better than the models with binary
handpicked word features, but it did not meet the 100% accuracy obtained on the
train set. This illustrates a common trade-off in modeling: given enough data, more
complex models can often outperform simpler ones, especially in situations like this
case study where simpler models have too much model bias to perform well. How‐
ever, complex models can be more difficult to interpret. For example, our tf-idf model
had over 20,000 features, which makes it basically impossible to explain how our
model makes its decisions. In addition, the tf-idf model takes much longer to make
predictions—it’s over 100 times slower compared to model 2. All of these factors need
to be considered when deciding which model to use in practice.

In addition, we need to be careful about what our models are useful for. In this case,
our models use the content of the news articles for prediction, making them highly
dependent on the words that appear in the train set. However, our models will likely
not perform as well on future news articles that use words that didn’t appear in the
train set. For example, our models use the US election candidates’ names in 2016 for
prediction, but they won’t know to incorporate the names of the candidates in 2020
or 2024. To use our models in the longer term, we would need to address this issue of
drift.

That said, it’s surprising that a logistic regression model can perform well with a rela‐
tively small amount of feature engineering (tf-idf). We’ve addressed our original
research question: our tf-idf model appears effective for detecting fake news in our
dataset, and it could plausibly generalize to other news published in the same time
period covered in the training data.

548 | Chapter 21: Case Study: Detecting Fake News

Summary
We’re quickly approaching the end of the chapter and thus the end of the book. We
started this book by talking about the data science lifecycle. Let’s take another look at
the lifecycle, in Figure 21-2, to appreciate everything that you’ve learned.

Figure 21-2. The four high-level steps of the data science lifecycle, each of which we dove
into throughout this book

This case study stepped through each stage of the data science lifecycle:

1. Many data analyses begin with a research question. The case study we presented
in this chapter started by asking whether we can create models to automatically
detect fake news.

2. We obtained data by using code found online that scrapes web pages into JSON
files. Since the data description was relatively minimal, we needed to clean the
data to understand it. This included creating new features to indicate the pres‐
ence or absence of certain words in the articles.

3. Our initial explorations identified possible words that might be useful for predic‐
tion. After fitting simple models and exploring their precision and accuracy, we
further transformed the articles using tf-idf to convert each news article into a
normalized word vector.

4. We used the vectorized text as features in a logistic model, and we fitted the final
model using regularization and cross-validation. Finally, we found the accuracy
and precision of the fitted model on the test set.

Summary | 549

When we write out the steps in the lifecycle like this, the steps seem to flow smoothly
into each other. But reality is messy—as the diagram illustrates, real data analyses
jump forward and backward between steps. For example, at the end of our case study,
we discovered data cleaning questions that might motivate us to revisit earlier stages
of the lifecycle. Although our model was quite accurate, the majority of the training
data came from the 2016–2018 time period, so we have to carefully evaluate the mod‐
el’s performance if we want to use it on articles published outside that time frame.

In essence, it’s important to keep the entire lifecycle in mind at each stage of a data
analysis. As a data scientist, you will be asked to justify your decisions, which means
that you need to deeply understand your research question and data. To develop this
understanding, the principles and techniques in this book equip you with a founda‐
tional set of skills. Going forward into your data science journey, we recommend that
you continue to expand your skills by:

• Revisiting a case study from this book. Start by replicating our analysis, then dive
deeper into questions that you have about the data.

• Conducting an independent data analysis. Pose a research question you’re inter‐
ested in, find relevant data from the web, and analyze the data to see how well the
data matched your expectations. Doing this will give you firsthand experience
with the entire data science lifecycle.

• Taking a deep dive into a topic. We’ve provided many in-depth resources in the
Additional Material appendix. Take the resource that seems most interesting to
you and learn more about it.

The world needs people like you who can use data to make conclusions, so we sin‐
cerely hope that you’ll use these skills to help others make effective strategies, better
products, and informed decisions.

550 | Chapter 21: Case Study: Detecting Fake News

Additional Material

Collected here are a variety of resources that offer a more in-depth treatment of the
larger themes in this book. In addition to recommendations for these topics, we pro‐
vide resources for several topics that we only lightly touched on. These resources are
organized in the order in which the topics appear in the book:

Shumway, Robert, and David Stoffer. Time Series Analysis and Its Applications. New
York: Springer, 2017.

This book covers how to analyze time-series data, like the Google Flu trends.

Speed, Terry. “Questions, Answers, and Statistics” ICOTS (1986): 18–28.
Leek, Jeffery and Roger Peng. “What Is the Question?” Science 347, no. 6228 (Febru‐

ary 2015): 1314–1315.

We recommend “Questions, Answers, and Statistics” if you want to learn more
about the interplay between questions and data. “What Is the Question?” con‐
nects questions with the type of analysis needed.

Lohr, Sharon. Sampling: Design and Analysis, 3rd edition. New York: Chapman and
Hall, 2021.

More on sampling topics can be found in Sampling: Design and Analysis. The
book also contains a treatment of the target population, access frame, sampling
methods, and sources of bias.

University of California, Berkeley, College of Computing, Data Science, and Society.
“HCE Toolkit.” Accessed September 15, 2023. https://oreil.ly/vzkBn.

Tuskegee University. “National Center for Bioethics in Research and Health Care.”
Accessed September 15, 2023. https://oreil.ly/XLsYx.

These toolkits will help you learn more about the human contexts and ethics of
data.

551

https://doi.org/10.1007/978-3-319-52452-8
https://oreil.ly/Nw0Rg
https://doi.org/10.1126/science.aaa6146
https://doi.org/10.1201/9780429298899
https://oreil.ly/vzkBn
https://oreil.ly/XLsYx

Executive Office of the President. Big Data: Seizing Opportunities, Preserving Values.
May 2014.

This concise White House report provides guidelines and rationale for data
privacy.

Ramdas, Aaditya. “Why the Easiest Person to Fool Is Yourself.” Accessed September
15, 2023. https://oreil.ly/dYiKe.

Ramdas gave a fun, informative talk in our class “Principles and Techniques for
Data Science” in fall 2019 on on bias, Simpson’s paradox, p-hacking, and related
topics. We recommend his slides from the lecture.

Freedman, David et al., Statistics, 4th edition. New York: Norton, 2007.

See Statistics for an introductory treatment of the urn model, confidence inter‐
vals, and hypothesis tests.

Owen, Art B. Monte Carlo Theory, Methods, and Examples. Self-published, 2013.

Owen’s online text provides a solid introduction to simulation.

Pitman, Jim. Probability. New York: Springer, 1993.
Blitzstein, Joseph K. and Jessica Hwang. Introduction to Probability. New York: Chap‐

man and Hall, 2014.

We suggest Probability and Introduction to Probability for a fuller treatment of
probability.

Bickel, Peter J. and Kjell A. Doksum. Mathematical Statistics: Basic Ideas and Selected
Topics Volume I, 2nd edition. New York: Chapman and Hall, 2015.

You can find a proof that the median minimizes absolute error in Mathematical
Statistics: Basic Ideas and Selected Topics Volume I.

McKinney, Wes. Python for Data Analysis, 3rd edition. Sebastopol, CA: O’Reilly, 2022.

Python for Data Analysis provides in-depth coverage of pandas.

Roland, F.D. The Essence of Databases. Upper Saddle River, NJ: Prentice Hall, 1998.
W3Schools, Introduction to SQL. Accessed September 15, 2023. https://

w3schools.com/sql/sql_intro.asp.
Kleppmann, Martin. Designing Data-Intensive Applications. Sebastopol, CA: O’Reilly,

2017.

552 | Bibliography

https://oreil.ly/hTlpq
https://oreil.ly/dYiKe
https://wwnorton.com/books/Statistics/
https://artowen.su.domains/mc
https://doi.org/10.1007/978-1-4612-4374-8
https://doi.org/10.1201/b17221
https://www.routledge.com/Mathematical-Statistics-Basic-Ideas-and-Selected-Topics-Volume-I-Second/Bickel-Doksum/p/book/9781498723800
https://www.routledge.com/Mathematical-Statistics-Basic-Ideas-and-Selected-Topics-Volume-I-Second/Bickel-Doksum/p/book/9781498723800
https://wesmckinney.com/book/
https://dl.acm.org/doi/book/10.5555/274800
https://w3schools.com/sql/sql_intro.asp
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/

The classic The Essence of Databases offers a formal introduction to SQL.
W3Schools provides SQL basics. Designing Data-Intensive Applications surveys
and compares different data storage systems, including SQL databases.

Hellerstein, Joseph M. et al. Principles of Data Wrangling: Practical Techniques for
Data Preparation. Sebastopol, CA: O’Reilly, 2017.

Principles of Data Wrangling: Practical Techniques for Data Preparation is a good
resource for data wrangling.

Lohr, “Nonresponse.” In Sampling: Design and Analysis.
Little, Roderick J. A., and Donald B. Rubin. Statistical Analysis with Missing Data.

Hoboken, NJ: Wiley, 2019.

For how to handle missing data, see Chapter 8 in Sampling: Design and Analysis
as well as Statistical Analysis with Missing Data.

Tukey, John Wilder. Exploratory Data Analysis. Reading, MA: Addison-Wesley, 1977.

Exploratory Data Analysis offers an excellent introduction to EDA.

Silverman, Bernard W. Density Estimation for Statistics and Data Analysis. New York:
Chapman and Hall, 1998.

The smooth density curve is covered in detail in Density Estimation for Statistics
and Data Analysis.

Wilke, Claus O. Fundamentals of Data Visualization. Sebastopol, CA: O’Reilly, 2019.

See Fundamentals of Data Visualization for more on visualization. Our guide‐
lines do not entirely match Wilke’s but they come close, and it’s helpful to see a
variety of opinions on the topic.

Brewer, Cynthia. ColorBrewer2.0. Accessed September 15, 2023. https://color‐
brewer2.org.

See ColorBrewer2.0 to learn more about color palettes.

Osborne, Christine. “Statistical Calibration: A Review”. International Statistical
Review 59, no. 3 (Dec 1991): pp. 309–336.

See Osborne for more on calibration.

W3Schools. Python RegEx. Accessed September 15, 2023. https://w3schools.com/
python/python_regex.asp.

Regular Expressions 101. Accessed September 15, 2023. https://regex101.com.

Bibliography | 553

https://www.oreilly.com/library/view/principles-of-data/9781491938911/
https://www.oreilly.com/library/view/principles-of-data/9781491938911/
https://doi.org/10.1201/9780429298899
https://www.wiley.com/en-us/Statistical+Analysis+with+Missing+Data,+3rd+Edition-p-9780470526798
https://archive.org/details/exploratorydataa00tuke_0
https://www.routledge.com/Density-Estimation-for-Statistics-and-Data-Analysis/Silverman/p/book/9780412246203
https://clauswilke.com/dataviz/
https://colorbrewer2.org
https://doi.org/10.2307/1403690
https://w3schools.com/python/python_regex.asp
https://regex101.com

Nield, Thomas. “An Introduction to Regular Expressions.” O’Reilly blog. December
13, 2017. https://oreil.ly/EWuO6.

Friedl, Jeffrey. Mastering Regular Expressions. Sebastopol, CA: O’Reilly, 2006.

You can practice regular expressions with many online resources. We recom‐
mend the preceding tutorial, regular expression checker, primer on the topic,
and book.

Fox, John. “Collinearity and Its Purported Remedies.” In Applied Regression Analysis
and Generalized Linear Models, 3rd edition. Los Angeles: Sage, 2015.

James, Gareth et al. “Unsupervised Learning.” In An Introduction to Statistical Learn‐
ing, 2nd edition. New York: Springer, 2021.

The preceding chapters in Applied Regression Analysis and Generalized Linear
Models and An Introduction to Statistical Learning discuss principal components.

Tompkins, Adrian. “The Beauty of NetCDF”. YouTube, April 2, 2021. https://oreil.ly/
3U6Rr.

“The Beauty of NetCDF” is a helpful video tutorial on how to work with netCDF
climate data

Richardson, Leonard. and Sam Ruby. RESTful Web Services. Sebastopol, CA: O’Reilly,
2007.

There are many resources on web services. We recommend RESTful Web Serv‐
ices for accessible introductory material.

Nolan, Deborah, and Duncan Temple Lang. XML and Web Technologies for Data Sci‐
ences with R. New York: Springer, 2014.

For more on XML, we recommend XML and Web Technologies for Data Sciences
with R.

Faraway, Julian J. Linear Models with Python. New York: Routledge, 2021.
Fox, Applied Regression Analysis and Generalized Linear Models.
James et al. An Introduction to Statistical Learning.
Weisberg, Sanford, Applied Linear Regression Hoboken, NJ: Wiley, 2005.

The many topics related to modeling, including transformations, one-hot
encoding, model-selection, cross-validation, and regularization are covered in
several sources. We recommend Linear Models with Python, Applied Regression
Analysis and Generalized Linear Models, An Introduction to Statistical Learning,
and Applied Linear Regression. “The Vector Geometry of Linear Models” in
Applied Regression Analysis and Generalized Linear Models gives an informative

554 | Bibliography

https://oreilly.com/content/an-introduction-to-regular-expressions
https://dl.acm.org/doi/10.5555/1209014
https://us.sagepub.com/en-us/nam/applied-regression-analysis-and-generalized-linear-models/book237254
https://us.sagepub.com/en-us/nam/applied-regression-analysis-and-generalized-linear-models/book237254
https://www.statlearning.com
https://www.statlearning.com
https://www.youtube.com/watch?v=UvNBnjiTXa0
https://dl.acm.org/doi/10.5555/1406352
https://doi.org/10.1007/978-1-4614-7900-0
https://doi.org/10.1007/978-1-4614-7900-0
https://julianfaraway.github.io/LMP/
https://us.sagepub.com/en-us/nam/applied-regression-analysis-and-generalized-linear-models/book237254
https://www.statlearning.com/
https://doi.org/10.1002/0471704091

treatment of vector geometry of least squares. “Diagnosing Non-Normality,
Nonconstant Error Variance, and Nonlinearity” in Applied Regression Analysis
and Generalized Linear Models and “Explanation” in Linear Models with Python
cover the topic of weighted regression.

Perry, Tekla S. “Andrew Ng X-Rays the AI Hype.” IEEE Spectrum, May 3, 2021.

This IEEE Spectrum interview with Andrew Ng is an interesting read on the gap
between the test set and the real world.

James et al. An Introduction to Statistical Learning.

“Moving Beyond Linearity” of An Introduction to Statistical Learning introduces
polynomial regression using orthogonal polynomials.

Chiu, Grace et al. “Bent-Cable Regression Theory and Applications.” Journal of the
American Statistical Association 101, no. 474 (January 1, 2012): pp. 542–553.

For more on broken-stick regression, see “Bent-Cable Regression Theory and
Applications.”

Rice, John. Mathematical Statistics and Data Analysis, 3rd edition. Boston, MA: Cen‐
gage, 2007.

A more formal treatment of confidence intervals, prediction intervals, testing,
and the bootstrap can be found in Mathematical Statistics and Data Analysis.

Wasserstein, Ronald L. and Nicole A. Lazar. “The ASA Statement on p-Values: Con‐
text, Process, and Purpose”. The American Statistician 70, no. 2 (2016): pp. 129–
133.

Gelman, Andrew and Eric Loken. “The Statistical Crisis in Science.” American Scien‐
tist 102, no. 6 (2014): pp. 460.

“The ASA Statement on p-Values: Context, Process, and Purpose” provides val‐
uable insights into p-values. “The Statistical Crisis in Science” addresses
p-hacking.

Hettmansperger, Thomas. “Nonparametric Rank Tests.” In International Encyclopedia
of Statistical Science, edited by Miodrag Lovric, 970–972. New York: Springer,
2014.

You can find information about rank tests and other nonparametric statistics in
“Nonparametric Rank Tests.”

Doerfler, Ron. “The Art of Nomography.” January 8, 2008. https://oreil.ly/twvK5.

Bibliography | 555

https://spectrum.ieee.org/andrew-ng-xrays-the-ai-hype
https://www.statlearning.com/
https://doi.org/10.1198/016214505000001177
https://www.cengage.com/c/mathematical-statistics-and-data-analysis-3e-rice/9780534399429/
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1511/2014.111.460
https://doi.org/10.1007/978-3-642-04898-2_417
https://deadreckonings.files.wordpress.com/2008/01/nomography.pdf

The technique for developing linear models to use in the field is addressed in
“The Art of Nomography.”

Fox, Applied Regression Analysis and Generalized Linear Models.
James et al. An Introduction to Statistical Learning.

“Logit and Probit Models for Categorical Response Variables” in Applied Regres‐
sion Analysis and Generalized Linear Models covers the maximum likelihood
approach to logistic regression. And “Classification” in An Introduction to Statis‐
tical Learning covers sensitivity and specificity in more detail.

Wasserman, Larry. “Statistical Decision Theory.” In All of Statistics. New York:
Springer, 2004.

“Statistical Decision Theory” has an in-depth treatment of loss functions and
risk.

Segaran, Toby. Programming Collective Intelligence. Sebastopol: O’Reilly, 2007.

Programming Collective Intelligence covers the topic of optimization

Bengfort, Benjamin et al. Applied Text Analysis with Python. Sebastopol: O’Reilly,
2018.

See Applied Text Analysis with Python for more on text analysis.

556 | Bibliography

https://us.sagepub.com/en-us/nam/applied-regression-analysis-and-generalized-linear-models/book237254
https://www.statlearning.com/
https://doi.org/10.1007/978-0-387-21736-9
https://www.oreilly.com/library/view/programming-collective-intelligence/9780596529321/
https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/

Data Sources

All of the data analyzed in this book are available on the book’s website and GitHub
repository. These datasets are from open repositories and from individuals. We
acknowledge them all here, and include, as appropriate, the filename for the data
stored in our repository, a description of the resource, a link to the original source, a
related publication, and the author(s)/owner(s).

To begin, we provide the sources for the four case studies in the book. Our analysis of
the data in these case studies is based on research articles or, in one case, a blog post.
We generally follow the line of inquiry in these sources, simplifying the analyses to
match the level of the book.

Here are the four case studies:

seattle_bus_times.csv

Mark Hallenbeck of the Washington State Transportation Center provides the
Seattle Transit data. Our analysis is based on “The Waiting Time Paradox, or,
Why Is My Bus Always Late?” by Jake VanderPlas.

aqs_06-067-0010.csv, list_of_aqs_sites.csv, matched_pa_aqs.csv, list_of_pur
pleair_sensors.json, and purpleair_AMTS

The datasets used in the study of air quality monitors are available from Karoline
Barkjohn of the Environmental Protection Agency. These were originally
acquired by Barkjohn and collaborators from the US Air Quality System and
PurpleAir. Our analysis is based on “Development and Application of a United
States-Wide Correction for PM 2.5 Data Collected with the PurpleAir Sensor” by
Barkjohn, Brett Gantt, and Andrea Clements.

donkeys.csv

Kate Milner collected the data for the Kenyan donkey study on behalf of the UK
Donkey Sanctuary. Jonathan Rougier makes the data available in the paranomo
package (follow link to download). Our analysis is based on “How to Weigh a
Donkey in the Kenyan Countryside” by Milner and Rougier.

557

https://learningds.org
https://github.com/DS-100/textbook
https://github.com/DS-100/textbook
https://oreil.ly/3hZ_A
https://oreil.ly/kaQv-
https://oreil.ly/kaQv-
https://oreil.ly/Sjku6
https://www2.purpleair.com
https://oreil.ly/jWuNx
https://oreil.ly/jWuNx
https://oreil.ly/oiMNE
https://oreil.ly/oiMNE
https://doi.org/10.1111/j.1740-9713.2014.00768.x
https://doi.org/10.1111/j.1740-9713.2014.00768.x

fake_news.csv

The hand-classified fake news data are from “FakeNewsNet: A Data Repository
with News Content, Social Context, and Spatiotemporal Information for Study‐
ing Fake News on Social Media” by Kai Shu et al.

In addition to these case studies, we use another 20-plus datasets as examples
throughout the book. We acknowledge the people and organizations that make these
datasets available in the order in which they appear in the book:

gft.csv

The data on the Google Flu Trends is available from Gary King Dataverse and the
plot made from these data is based on “The Parable of Google Flu: Traps in Big
Data Analysis” by David Lazer et al.

WikipediaExp.csv

Arnout van de Rijt provides the data for the Wikipedia experiment. These data
are analyzed in “Experimental Study of Informal Rewards in Peer Production” by
Michael Restivo and van de Rijt.

co2_mm_mlo.txt

The CO2 concentrations measured at Mauna Loa by the National Oceanic and
Atmospheric Administration (NOAA) are available from the Global Monitoring
Laboratory.

pm30.csv

We downloaded these air quality measurements for one day and one sensor from
the PurpleAir map.

babynames.csv

The US Social Security Department provides the names from all Social Security
card applications.

DAWN-Data.txt

The 2011 DAWN survey of drug-related emergency room visits is administered
by the US Substance Abuse and Mental Health Services Administration.

businesses.csv, inspections.csv, and violations.csv
The data on restaurant inspection scores in San Francisco is from DataSF.

akc.csv

The data on dog breeds come from Information Is Beautiful’s “Best in Show: The
Ultimate Data Dog” visualization and was originally acquired from the American
Kennel Club.

558 | Data Sources

https://arxiv.org/abs/1809.01286
https://arxiv.org/abs/1809.01286
https://arxiv.org/abs/1809.01286
https://doi.org/10.7910/DVN/24823
https://doi.org/10.1126/science.1248506
https://doi.org/10.1126/science.1248506
https://oreil.ly/BDDSV
https://noaa.gov
https://noaa.gov
https://gml.noaa.gov/obop/mlo
https://gml.noaa.gov/obop/mlo
https://www2.purpleair.com
https://oreil.ly/DBiky
https://oreil.ly/n8NOQ
https://samhsa.gov
https://datasf.org
https://oreil.ly/KjIyv
https://oreil.ly/KjIyv
https://akc.org
https://akc.org

sfhousing.csv

The housing sale prices for the San Francisco Bay Area were scraped from the
San Francisco Chronicle real estate pages.

cherryBlossomMen.csv

The run times in the annual Cherry Blossom 10-mile run were scraped from the
race results pages.

earnings2020.csv

The weekly earnings data are made available by the US Bureau of Labor Statistics.

co2_by_country.csv

The annual country CO2 emissions is available from Our World in Data.

100m_sprint.csv

The times for the 100-meter sprint are from FiveThirtyEight and the figure is
based on “The Fastest Men in the World Are Still Chasing Usain Bolt” by Josh
Planos.

stateoftheunion1790-2022.txt

The State of the Union addresses are compiled from the American Presidency
Project.

CDS_ERA5_22-12.nc

We collected these data from the Climate Data Store, which is supported by the
European Centre for Medium-Range Weather Forecasts.

world_record_1500m.csv

The 1,5000-meter world records come from the Wikipedia page “1,500 Metres
World Record Progression”.

the_clash.csv

The Clash songs are available at the Spotify Web API. The retrieval of the data
follows “Exploring the Spotify API in Python” by Steven Morse.

catalog.xml

The XML plant catalog document is from the W3Schools plant catalog.

ECB_EU_exchange.csv

The exchange rates are available from the European Central Bank.

mobility.csv

These data are available at Opportunity Insights, and our example follows
“Where Is the Land of Opportunity? The Geography of Intergenerational Mobi‐
lity in the United States” by Raj Chetty et al.

Data Sources | 559

https://oreil.ly/kaziA
https://cherryblossom.org
https://oreil.ly/cZG_w
https://ourworldindata.org
https://fivethirtyeight.com/
https://oreil.ly/ewY7w
https://oreil.ly/AnkW8
https://oreil.ly/AnkW8
https://cds.climate.copernicus.eu
https://ecmwf.int
https://oreil.ly/2_P4H
https://oreil.ly/2_P4H
https://oreil.ly/FYP8B
https://oreil.ly/mWgYl
https://oreil.ly/MNw-G
https://oreil.ly/Wc61c
https://oreil.ly/W_5KH
https://doi.org/10.1093/qje/qju022
https://doi.org/10.1093/qje/qju022

utilities.csv

Daniel Kaplan’s home energy consumption data is available to download and
appear in his first edition of Statistical Modeling: A Fresh Approach (self-pub, Cre‐
ateSpace).

market-analysis.csv

Stan Lipovetsky provides these data, and they correspond to the data in his paper
“Regressions Regularized by Correlations”.

crabs.data

The crab measurements are from the California Department of Fish and Wildlife,
available to download from the Stat Labs Data repository.

black_spruce.csv

Roy Lawrence Rich collected the wind-damaged tree data for his thesis “Large
Wind Disturbance in the Boundary Waters Canoe Area Wilderness. Forest
Dynamics and Development Changes Associated with the July 4th 1999 Blow‐
down”. The data are available online in the alr4 package. Our analysis is based
on “Logistic Regression” in Weisberg’s Applied Linear Regression.

560 | Data Sources

https://oreil.ly/YTAsK
https://dtkaplan.github.io/SM2-bookdown/preface-to-this-electronic-version.html
https://oreil.ly/UZUJq
https://wildlife.ca.gov
https://oreil.ly/mZsQ8
https://oreil.ly/Pkw8N
https://oreil.ly/Pkw8N
https://oreil.ly/Pkw8N
https://oreil.ly/Pkw8N
https://oreil.ly/6rPOB
https://doi.org/10.1002/0471704091

Index

Symbols
= (equals), SQL versus Python, 120
== (double equals), for Python equality, 120
α (learning rate), 519
θ (theta, parameter), in model fitting, 53-59
λ (regularization parameter), 425
σ (sigmoid function), 502

A
absolute error loss function, 55
absolute upward mobility (AUM), 388
access frame, 12-16, 20, 29
accuracy, 19-24, 282-283
add_annotation() method, 276
agg(fn) method, 97
aggregation

basic group-aggregate, 92-94, 123-124
CO₂ data from Mauna Loa dataset, 171
custom aggregation functions, 96-98
in dataframes, 91-100
multiple columns, grouping on, 95, 124
pivoting, 98-100
restaurant safety violations dataset, 188-190
smoothing (see smoothing)
with SQL, 122-126

air quality sensors study, 27, 281-311
AQS sites, 284-294, 302-307
bootstrapping for inference, 444-446
collocated sensors, finding, 284-290
data science lifecycle, 46-49
exploring measurements, 302
geographic data visualization, 267
linear model, 372-388
list of, 284-286

PurpleAir sites, 286-310
question, design, scope, 282-283
wrangling sensor data, 290-302

alternation to create features, 326
alternative hypothesis , 433
American Kennel Club (see dog breeds dataset)
analysis value, quality checks, 172
anchors, text, 324
AND keyword, relations filters, 120
annotations for plots, 276
Anscombe’s quartet, 370
apply() method, 107-109
AQS (Air Quality System) (see air quality sen‐

sors study)
arguments, CLI tools, 151
AS keyword, SQL, 133
ASCII character encoding, 146
aspect ratio of plot, adjusting, 241
assign() method, 109
assignment variation, 22, 23
asymmetric loss function, 60
AUM (absolute upward mobility), 388
average rank statistics theory, 456-459
AVG function, SQLite, 125
axes in plots, adjusting, 237-238

B
baby names dataset (see dataframes; SQL)
bag-of-words transform, 332
bandwidth parameter, KDE plots, 250
banking to decipher relationships, 241
bar plots, data distribution, 210, 216, 258-260,

262
Barkjohn, Karoline, 282

561

bash shell, 151
batch gradient descent, 524
Bernoulli, Jacob, 28
bias

donkey weight study sources, 472
model, 466
potential in EDA process, 195
response, 27
types of, 20-22, 177
urn model of election poll with, 40-42
and variance in model, 425-429

bias squared, 59
bias–variance trade-off, 429-430
big data considerations

accessing large data files, 150
and persistence of bias, 41-42
question and scope example, 10-19

binary classification, 498
binary data, 337
binning data, smoothing technique, 247-250
binomial distribution, 36
blocks, sizing folders, 153
bool storage type, 205
boolean conditions

extracting information from strings, 191
filtering a dataframe, 87
slicing dataframe rows to filter, 119

boolean values
and feature types, 197
and storage types, 205

bootstrap confidence interval, 446
bootstrapping for inference, 442-446
boot_stat() function, 445
boundaries, text, 324
box plots, data distribution, 213, 250, 252
Box, George, 375
bus arrival times dataset, 63-75

and constant model, 52
exploring phase, 67-70
modeling wait times, 70-74
prediction intervals, 450
question and scope, 64
wrangling data, 64-67

C
canonicalizing text, 315
captions, text context in plots, 170, 268-270
case studies, purpose of, 6
cat command, 154

categorical data
collapsing categories, 205
color palette for, 260
converting numeric data into, 206
feature engineering for measuring, 400-407
multiple variable complexities in plotting,

219
nominal features, 197
ordinal features, 197, 206
relabeling, 203
transforming data to identify, 191
transforming qualitative features, 203-206

category dtype, 206
causation versus correlation, 6
chance mechanism, 21

(see also probability)
to avoid bias, 21
to balance variation, 22-24
in data generation process, 432
effectiveness from using, 46
in inference and prediction, 468
randint, 445
in simple random sample, 30

character classes, 322, 328
character encoding, 146-147
chardet package, 146
chartjunk, 268
Cherry Blossom race dataset, 245, 247-249,

265-266, 274
classes, character, 322
classification, 495-515

fake news detection (see fake news detection
case study)

loss function for logistic model, 505-509
and modeling, 498-501
and probabilities, 501-505, 509-514
proportions modeling, 501-505
wind-damaged trees, 496-498

cleaning data, 163
Clements, Andrea, 282
CLI (command-line interface) tools, 151
cluster sampling, 31
codebook, in EDA, 198, 200-203
cohort changes in data over time, accounting

for, 265
collapsing categories, 205
colon-separated file format, 142
color palette selection in visualizations, 260

562 | Index

comma-separated value (CSV) file format, 80,
127, 142, 144, 284

command-line interface (CLI) tools, 151
common table expressions, SQL, 134
concatenation of literals, 322-324
confidence intervals, 446-449
confusion matrix, 511, 514, 543-546
constant model, 52-53, 498
context information in visualization plots,

268-270
continuous features, 197
controlling for a feature, plots for data distribu‐

tion, 219
convex and differentiable loss functions,

522-524
correlation coefficient, 370
correlation versus causation, 6
COUNT function, SQLite, 125
coverage bias, 20, 472, 531
COVID-19 vaccine efficacy, 27, 43-46, 433,

439-441
CO₂ emissions for different countries dataset,

259-260
CO₂ measurements, Mauna Loa Observatory,

18-19, 164-172, 184
crab incremental growth predictions, 453-455
CREATE TABLE statement, SQL, 133
CREATE VIEW statement, SQL, 133
cross-entropy loss, 508
cross-sectional versus longitudinal studies, 265
cross-validation, model selection, 419-424
CSV (comma-separated value) file format, 80,

127, 142, 144, 284
curse of dimensionality, data distribution, 219,

252
custom aggregation functions, pandas, 96-98

D
data design, 263-268
data dictionary, in EDA, 198, 200-203
data distributions, 431-433

logarithm transformation, 223-225
multivariate relationships, 38, 211-220
normal distribution, 439, 462, 464
plot types, 207-211
reducing to quantiles, 250-252
simulation and data design, 33-36
in testing, inference, prediction, 431

data dredging, 196

data exchange
exchange rate example, 360-363
HTML, 353, 355
HTTP, 345-349
JSON, 145, 286, 341-345
NetCDF data, 336-341
race times, scraping from Wikipedia,

356-358
REST, 349-353
XML, 353-355
XPath expressions, 358-360

data science, state of the field, xv
data scope, 9-19

air quality example, 47, 290, 302
and data design, 263-268
DAWN survey, 140
fake news detection, 530
quality checks, 172
restaurant food safety study, 140
role in data analysis, 13
subsetting, 80-81
in urn model, 29
vaccine efficacy trial, 43-46
weighing the donkey example, 471

data tables
granularity, 155-160, 171, 184, 291-292,

296-300
grouping rows in (see grouping in data

tables)
and matrices, 139
shape of (see shape of data table)
weights (wt) in, 159

data types
in dataframe structure, 80
and dataframe versus matrix, 112
and dtype storage type, 198, 204
programming versus data science types, 80
temporal, 179

DataArray, 340
Dataframe object, 80, 84, 182
dataframe structure

versus file formats, 142
modifying, 183-186

dataframes, 79-113, 163-193
aggregating, 91-100
CO₂ measurements at Mauna Loa Observa‐

tory, 164-172
day_of_week attribute, 181
filtering, 80, 86-89

Index | 563

and indices, 81-82
joining, 100-106
versus matrices, 112
missing values and records, 176-178
modifying structure, 183-186
mutating, 109
piping for transformations, 182
quality checks, 172-176
versus relations, 113
restaurant safety violations, 186-192
slicing, 80, 83-86, 87, 89-91, 119
versus spreadsheets, 111
subsetting, 80-91, 115-122, 150
timestamps, 179-182
transforming, 107-111, 178-183

dates and times (see times and dates)
DAWN (Drug Abuse Warning Network) sur‐

vey, 140, 158-160, 173, 266
deductive imputation, 177, 189
delimited file formats, 142-144
density curve plot, data distribution, 208-211,

213
density in y-axis, histogram, 210
DESC option, relations filters, 121
design matrix, 384, 394
detect() method, 146
differentiable and convex loss functions,

522-524
discrete features, 197
disk storage versus RAM, 148
distributed computing system, to work with big

data, 151
distributions (see data distributions)
documents in text analysis, 330
dog breeds dataset, 198-220

and including zero on plot axis, 237
ordering groups, 256
plotting functions, 275
revealing data relationships, 241-244
smoothing histogram to uncover shape,

245-246
donkey weight prediction case study (see

weighing a donkey case study)
dot plot, data distribution, 210
double equals (==), for Python equality, 120
drift in fake news detection data, 548
Drug Abuse Warning Network (see DAWN)
dt accessor, 181
du (disk usage) tool, 153

E
ecological regression, 389
economic mobility example, linear models,

388-395
EDA (see exploratory data analysis)
election outcome prediction, 14, 21, 27
election poll bias and variance simulation,

36-42
empirical distribution, 431-433
empirical risk minimization, 466
encoding, file/character, 146-147
energy consumption overfitting dataset,

410-415
environmental hazards and individual health,

15
epoch, 525
equals (=), SQL versus Python, 120
errors

air quality data, 374-376, 383
and cross-validation limitations, 424
in donkey weight data analysis, 483
irreducible, 467
linear model fitting, 368, 385, 391
mean absolute error, 55-57
mean squared error, 57-59
measurement, 17-19, 23
and missing value handling, 178
and quality checks, 172
test set/training set differences, 417

escaping metacharacters, 324
Excel, file format issue, 144
exchange rates, accessing from ECB, example,

360-363
expected value, 457
exploratory data analysis (EDA), 5, 195-233

bus arrival times dataset, 67-70
distributions, 207-211
fake news detection study, 535-541
feature (variable) types, 196-207
guidelines for exploration, 220-233
home sale prices example, 221-233
multivariate settings, comparisons in,

216-220
variable relationships, 211-232
weighing a donkey case study, 477-481

Exploratory Data Analysis (Tukey), 195
eXtensible Markup Language (XML), 145,

353-355
extraction, transformation type, 179, 190-192

564 | Index

F
facet plots, 217, 272, 275
fake news detection case study, 529-550

exploring data, 535-541
modeling, 542-548
obtaining and wrangling data, 531-535
question and scope, 530

feature engineering
categorical measurements, 400-407
numeric measurements, 396-400
qualitative features, 203-206, 485-488
tf-idf transform for predicting fake news,

546-548
transforming features (see transformations)

feature extraction, 190-192
features and feature types, 174, 196-207

(see also variables and variable types)
alternation to create, 326
dog breeds example, 198-206
during EDA, 206, 220
feature engineering, 203-206, 396-407,

485-488, 546-548
grouping to create, 326
matching types to plots, 206
multivariate relationships, 211-220
plot types to analyze distribution, 207-211
related features, quality across, 174
and summary statistics calculation, 207
and text transformation, 317
transforming features (see transformations)

Figure object, 271
file formats, 142, 153
filename extensions, 145
files, wrangling, 139-161

data source examples, 140-142
file encoding, 146-147
file formats, 142-146
shell and command-line tools, 151-155
size of files, 148-151
table shape and granularity, 155-160

filling data region, visualization, 236
filtering data

dataframe subsetting, 80, 86-89
relations, 119-121
restaurant food safety focus, 187
and slicing, 87, 89-91, 121
timestamps, 299
with XPath, 358-360

finite population corrective factor, 462

fitting the model, 51-61
assessing the fit, 375-376
multiple linear model, 384-388, 484
as optimization process, 54
overfitting, 410-415, 418, 424, 475
simple linear model, 368-371, 377-379, 482

fixed-width file format (FWF), 144
flag options, CLI tools, 151
floating point number, 199
folder sizes, finding, 153
foreign keys, 157
FROM clause, SQL, 124
functions

for faceted subplots, 272
loss functions (see loss functions)
piping transformations, 182
for plotting, 274-276
SQL transforming, 131-134

FWF (fixed-width file format), 144

G
Gantt, Brett, 282
geographic data, 267
GFT (Google Flu Trends) big data example, 10,

17
ggplot2 library, R language, 278
GitHub, xvi
Google Flu Trends (GFT) big data example, 10,

17
gradient descent, 377, 518-528
grammar of graphics theory, 278
granularity, data table

air quality sensors study, 291-292, 296-300
CO₂ emissions, 171
finding, 155-160
mixed, addressing, 184
modifying, 184

GridSearchCV, 424
Group By clause, SQL, 123
GROUP BY function, relations, 125
group-aggregate, 92-94, 123-124
groupby() function, 93, 95
grouping in data tables

changing granularity with, 188
creating features with, 326
custom functions, 96-98
dataframes, 92
and pivoting, 98
relations with multiple columns, 124

Index | 565

SQL, 122-126

H
-h flag, CLI option, 153
head command, 154
health and environmental hazards, 15
hierarchical file formats, 145
histograms, for data distribution, 208-211,

245-250
home sale prices example, 262

data collected over time, 263
exploratory data analysis, 221-232
log scaling, 239-241
scaling data, 236

hot-deck imputation, 178
HTML (HyperText Markup Language), 145,

353, 355
Huber loss, minimizing, 520-522
hypergeom.pmf, 36
hypergeometric probability distribution, 35-36,

45
hypothesis testing, 433-441

I
iloc property, 83
imbalanced classes, handling, 510
imputation of missing values, 177
index of dataframe, rows as, 82
inferences, 367

(see also theory for inference and predic‐
tion)

INNER JOIN clause, SQL, 128
inner joins, 101-103, 127-128
instruments for taking measurements, accuracy

of, 16
integers, 197, 200
interaction term, log-log model, 398
irreducible error, 467
item nonresponse bias, 21

J
jiggling the baseline, stacked bar plot, 259
jittering, in scatterplots, 254
join() method, 102
joining, 100-106

inner joins, 101-103
left and right joins, 129-130
left, right, outer joins, 103-106

NYT name categories example, 105-106,
130-131

SQL and relations, 126-131
joint distribution, 461
JSON (JavaScript Object Notation), 145, 286,

341-345

K
k-fold cross-validation, 419-424
kernel density estimate (KDE), 210, 246, 247,

250, 254
kernel functions, 210
key-value format in file, 145
KFold class, 420-424

L
-l flag, CLI option, 152
-L flag, CLI option, 153
labels, 170
labels, dataframes, 79
lasso regression, 425
Latin-1 (ISO-8859-1), 146
layout modification, 273
learning rate (α), 519
least squares line, 374
least squares method, 377
leave-one-out cross-validation, 420
LEFT JOIN clause, SQL, 129
left joins, 103, 127-130, 188
len function, 107
LENGTH() function, SQL, 131
lifecycle, data science, 3-7

accuracy, 19-24
air quality measurement, 46-49
bus arrival times case study, 63-75
election poll bias and variance simulation,

36-42
examples, 6
Google Flu Trends example, 10-19
instruments and protocols, 16
measuring natural phenomena, 17-19
modeling with summary statistics, 51-61
questions and data scope, 9-25
simulation and data design, 27-50
stages of, 3-5
target population, access frame, sample,

12-16
vaccine randomized trial simulation, 43-46

LIMIT keyword, relations filters, 119

566 | Index

line plots, data distribution, 215, 259-260
linear modeling, 367-408

assessing the fit, 375
categorical measurements, 400-407
economic mobility example, 388-395
fitting the model, 368-371, 377-379,

384-388, 484
inference and prediction (see theory for

inference and prediction)
interpreting, 374
model selection (see model selection)
multiple linear model, 379-395
numeric measurements, 396-400
simple model, 368-384
weighing a donkey case study, 471-491

LinearRegression, 379, 383, 412
loc property, 83-86
log odds model, 504
log scale, transforming axis to, 239-241
log-linear, 398
log-log model, 398
logarithm transformation

converting right-skewed distributions,
223-225

for revealing relationships, 243, 411
for revealing shape, 239

logistic curve, 505
logistic function, 502
logistic model, 502-504, 505-509
logistic regression, 508
LogisticRegressionCV, 542
long form data, 184
longitudinal versus cross-sectional studies, 265
loosely formatted text, 145
loss functions

convex and differentiable, 522-524
and gradient descent, 518-520
for logistic model, 505-509
minimizing loss, 51, 54-60
for prescribing anesthetics, 481

ls command-line tool, 151
L₂ regularization, 425, 542

M
machine learning, 368, 394
MAE (mean absolute error), 55-57
man tool, 151
maps to track geographic data, 267
mathematical transformation, 179

matplotlib library, 278
matrices

and data tables, 139
versus dataframes, 112

matrix multiplication, 385
MAX function, SQLite, 125
mean absolute error (MAE), 55-57
mean imputation, 177
mean squared error (MSE), 57-59, 369
mean, median, or mode, summary statistics,

53-60
measurement bias, 21, 472, 531
measurement error, 17-19, 23
measurements and values, quality checks, 172,

173
melt() method, 186
memory versus disk storage, 148
merge() method, joining tables, 102, 104
metacharacters, 324, 327
Milner, Kate, 471
MIN function, SQLite, 125
mini-batch gradient descent, 525
minimize() method, 483, 522
missing at random given covariates data, 177
missing completely at random data, 176
missing values and records

aggregating in restaurant safety data, 189
air quality sensors data, 300-302
CO₂ tracking on Mauna Loa example,

170-170
dataframe wrangling, 176-178
time series, 170

mixed granularity, addressing, 184
model bias, 428, 466
model selection, 409-430

bias and variance in model, 425-429
cross-validation, 419-424
overfitting, 410-415
regularization, 424
train-test split, 415-419

model variance, 467
model variation, 428
modeling

and classification, 498-501
fake news detection, 542-548
fitting (see fitting the model)
linear model (see linear modeling)
loss minimization, 54-60
urn model (see urn model)

Index | 567

MSE (mean squared error), 57-59, 369, 417-419
multiple columns, grouping on, 95
multiple linear model, 379-395, 484
multiple R², 388, 407
multivariate distributions, 38, 211-220
multivariate_hypergeom.rvs method, 38
mutating dataframes, 109
MySQL, 116

N
-n option, head command, 154
negated character classes, 323
negative log likelihood, 508
NetCDF data, 336-341
Newton’s method, optimization with, 526
nltk library, 332
node set, 359
nominal features, 197
nonresponse bias, 21, 177
normal distribution, 439, 462, 464
normal equations, 378
normalization

and tf-idf transform, 546
home sale prices example, 264
json_normalize() method, 342
of random variables in testing, 462

np.random.choice method, 29
null hypothesis, 433
numbers, dataframe labels as, 82
numeric computation type, 199
numeric data, 197, 206

and apply() method, 110
color palette for, 260
converting into categorical data, 206
feature engineering for measuring, 396-400
versus qualitative data, 212-214
and random variables, 459
relating multivariate distributions, 211,

216-220
transforming text data to, 317

numerical optimization, 517-528
for data storage types, 199
gradient descent, 518-528
Huber loss, minimizing, 520-522
loss functions, convex and differentiable,

522-524
numpy arrays, 112
numpy library, xvi, 28-30, 35

NYT name categories, popularity of, 105-106,
130-131

O
observational studies, 265-266
100m sprint times dataset, 269
one-hot encoding, 400-407, 485-487
OneHotEncoder, 402
online community active levels, 14, 17
operating systems, path variations in, 143
optimization

apply() method issue for pandas, 111
and model fitting, 54
numerical, 199, 517-528

OR keyword, relations filters, 120
ORDER By keyword, relations filters, 121
ordering groups in visualizations, 256-257
ordinal features, 197, 206
os library, 149
outcome, model, 368
outer join, 104
outliers

removing to fill data region, 236
visibility in box plots, 214
wrangling donkey weight study data, 475

overfitting, 410-415, 418, 424, 475
overplotting, 245, 253, 497

P
p-values, 435, 439
pandas library, 80

(see also dataframes; scikit-learn)
importing (pd), 80
memory limits for importing into, 150
regular expressions, 328
versus SQL, 116
string methods, 319

parameterized bootstrap, 443
parameters, 17-19
Path object for files and folders, 142
pathlib library, 142
pd.Dataframe object, 80, 84, 182
pd.Series object, 84, 87, 93, 99, 111
pd.Timestamp object, 180
Pennsylvania urn model, election polling exam‐

ple, 38-40
percentiles, computing in Python, 207
pie charts, data distribution, 262
pipe() method, 182

568 | Index

Pipeline object, 424
pivot tables, 184
pivoting, 91, 98-100, 125
pivot_table() function, 100
plain text, 146
plotly library, 90, 235, 270-277
plotly.express module, 271
plots for data distributions (see visualization,

data)
PM2.5 particles, AQS study, 283, 293
poll data for elections, 15
polynomial features, 398, 413
PolynomialFeatures tool, 412
populations, 12, 14

distribution, 431-433
versus sample, 29

PostgreSQL, 113, 116, 126
practical versus statistical significance, 467
precision metric, 19

(see also variation)
precision versus recall, 512-514
precision-recall (PR) curve, 513
predict() function, 508
prediction intervals, 450-455
predictions and predicting, 367

and chance mechanism, 468
data distribution, 431-433
donkey weight (see weighing a donkey case

study)
election outcomes, 14, 21, 27
probability for, 455-467

predict_proba() function, 508
primary key, 156
principal component analysis, 333
probability

binomial distribution, 36
and classification, 501-505, 509-514
hypergeometric distribution, 35-36, 45
for inference and prediction, 455-467
in model selection, 465-467
modeling, 238, 501-505
multivariate_hypergeom.rvs, 38
in testing and intervals, 462-464

probability distribution, 432
process of data collection, and data quality, 16
proportions, modeling, 238, 501-505
protocol, data collection, 16, 21
PurpleAir sensor sites

and accuracy versus timeliness of data, 283

correcting measurements, 308-310
exploring measurements, 302-307
list of, 286-290
wrangling sensor data, 294-302

px.line() function, 99
Python, xvi

(see also pandas library; specific tools)
percentile computing in, 207
and SQL, 115
string methods, 319

Pythonic Perambulations (VanderPlas), 63

Q
quadratic function, linear model, 377
qualitative data and features, 196

donkey weight modeling, 485-488
relating multivariate distributions, 214-220
versus quantitative, 212-214

quality checks, dataframes, 172-176
quantifiers, regular expressions, 324
quantile–quantile (q–q) plot, 250-252, 254
quantitative data and features (see numeric

data)
quantitative to ordinal conversion, 206
question, purpose in data science lifecycle, 9, 11

R
race times, scraping from Wikipedia, example,

356-358
random access memory (RAM), 148
random selection of data sample, 30, 43-46
random variables, 457, 459-462
random.choice method, 28-30
random.hypergeometric method, 35
randomized controlled experiments, 43-46, 434
rankdata() method, 437
ranksums test, 439
readline() method, 145
read_csv function, 80, 165
read_fwf() method, 158
read_json() method, 344
read_sql function, 116
read_text() method, 143
rectangular data (see dataframes; relations)
reference tables, regular expressions, 327-329
regression line, 374
regular expressions (regex), 321-329

alternation to create features, 326
concatenation of literals, 322-324

Index | 569

grouping to create features, 326
methods, 328
quantifiers, 324
reference tables, 327-329

regularization, 424, 429, 542
regularization parameter (λ), 425
relabeling categories, 203
relational database management systems

(RDBMs), 113, 150
relations, 115-135

aggregating, 122-126
versus dataframes, 113
joining, 126-131
subsetting, 115-122
transforming, 131-135

relative standard error, 48
requests library, 347
resample() method, 297
residuals, 375

(see also errors)
response bias, 27
REST (REpresentational State Transfer),

349-353
restaurant food safety dataset

inspections and violations, 156, 186-192
timestamp transformation, 140-142,

179-182
wrangling files, 155-158

Rich, Roy Lawrence, 496
ridge regression, 425
right joins, 104, 127-130
Rougier, Jonathan, 471
rug plot, data distribution, 207, 210, 252
R² (coefficient of determination), 388, 407

S
-s flag, CLI option, 153
sample correlation coefficient, 370
samples and sampling, 12

distribution of statistic, 32-35
versus population, 29
PurpleAir sampling rate check, 299
sampling variation, 22
unequal, 266
urn model, 30-35

sampling distribution, 431-433
San Francisco Bay area home prices (see home

sale prices example)

San Francisco restaurant (see restaurant food
safety dataset)

scalar functions, 131-134
scale principles in visualization

banking to decipher relationships, 241
filling data region, 236
revealing shape through transformations,

239-241
straightening to reveal relationships,

242-244
zero, including, 237-238

scatter() function, 271
scatterplots, data distribution, 211, 217-220,

254
scientific reproducibility crisis, and EDA, 196
scikit-learn library

bag-of-words transform, 332
KFold class, 420-424
linear modeling, 379
logistic models, 508
PolynomialFeatures tool, 412

scipy.stats.multivariate_hypergeom.rvs method,
38

scope of data consideration (see data scope)
SE (standard error), 448
SELECT clause, SQL, 123, 131
SELECT statement, relations filters, 118
selection bias, 21, 472, 531
self-selection bias, 21
sensitivity (recall), 512
sequential color palette for numeric data, 260
Series object, 84, 87, 93, 99, 111
sh shell interpreter, 152
shape of data table

CO₂ measurements, Mauna Loa Observa‐
tory, 184

finding, 155-160, 171
home sale prices example, 221, 224
restructuring, 184
revealing through scale choice, 239-241
smoothing data for visualization, 245-246

shell commands, 151-155
shorthands for character classes, regular

expressions, 323
sigmoid (σ) function, 502
signal in data, 51
simple linear model, 368-384, 482-484
simple random sample, 30
Simpson’s paradox, 219

570 | Index

simulation studies, 29
bus wait times, 72-74
election poll bias and variance, 27, 36-42
sampling distribution, urn model, 27, 33-36
vaccine randomized trial, 27, 43-46, 434,

439-441
with hypergeometric distribution, 35-36

size of file, 148-151
size() aggregation method, 94
skewed distribution, histogram plot, 208
slicing

dataframes, 80, 83-86, 87, 89-91, 119
and filtering, 87, 89-91, 121
numpy array, 87
relations, 118-119, 121

smoothing data for visualization, 245-254
reducing distributions to quantiles, 250-252
tuning of smoothing techniques, 249
uncovering relationships and trends,

247-249
uncovering shape, 245-246
when not to smooth, 252-254

spatial data patterns, 13
specificity (true negative rate), 514
splitting strings to extract text pieces, 320
spotipy library, 349
spreadsheets

file format issue, 144
versus dataframes, 111

SQL (structured query language), 115-135
aggregating, 122-126
dataframes versus relations, 113
joining, 126-131
multistep queries, 134-134
and pandas, 116
scalar functions, 131-134
subsetting, 115-122

sqlalchemy package, 116
SQLite, 116, 125, 130
stacked line plot, 259-260
stacking in bar plots, avoiding in visualizations,

258-260
standard deviation, 48, 207, 457
standard error (SE), 448
standard format, converting text to, 316
statistical versus practical significance, 467
statsmodels library, 405, 453
stochastic gradient descent, 525
straightening to reveal relationships, 242-244

stratified sampling, 31
strings

and converting dates to timestamps, 293,
296

dataframe labels as, 82
finding and transforming in EDA, 199, 205
manipulation tools, 318-321
pandas methods, 319
Python methods, 319
regular expressions, 321-329
splitting to extract text, 320

structured query language (see SQL)
subsetting, dataframes

as approach to working with big data, 150
data scope and question, 80-81
dataframes and indices, 81-82
filtering rows, 86-89
Luna as popular name example, 89-91
slicing, 83-86
SQL and relations, 115-122

SUBSTR() function, SQL, 132
substrings, 132
SUM function, SQL, 123
sum() method, aggregation, 96
supervised learning, 495
symlinks, 153

T
tab-separated value (TSV) file format, 142
tail command, 154
target population, 12

(see also populations)
target, access, sample framework, 12-16, 20-22
temporal structure of data, 13
term frequency-inverse document frequency

(tf-idf), 332, 546-548
test set, 415
text, 315-334

additions to visualization plots, 170,
268-270

analysis of, 317, 329-334
converting to standard format, 316
extracting text to create feature, 316
fake news detection analysis, 540-541, 542,

542
loosely formatted, 145
regular expressions, 321-329
standard format, converting to, 318
string manipulation, 318-321

Index | 571

text mining, 329-334
tf-idf transform, 332, 546-548
TFidfVectorizer, 546
theory for inference and prediction, 431-468

bootstrapping for inference, 442-446
confidence intervals, 446-449
distributions, 431-433
hypothesis testing, 433-441
prediction intervals, 450-455
probability's role, 455-467

tidy data, 184
time series data, visualization, 263
time zones, handling, 297
time, data collected over, 263
Timedelta object, 293
timeliness versus accuracy of data, 282-283
times and dates

cohort changes in data over time, 265
converting date strings to timestamps, 293
converting strings to timestamps, 296
day_of_week attribute, 181
gesmes vocabulary in time-series exchange,

361
grouping time series data, 297
missing data in time series, 170
publication dates for fake news study,

538-540
visualizing data category as time series, 263

timestamps, 140-142, 179-182, 263, 297-298
to_datetime() method, 180
Trace objects, 272
train-test split, model selection, 415-419
training set, 415
train_test_split() method, 416
transformations, 107-111, 178-183

apply() method, 107-109, 110
to identify categorical data, 191
L names, popularity of, 109-110
logarithm (log), 223-225, 239, 243, 411
mathematical, 179
and normalization, 546
piping for, 182
of qualitative features, 203-206
of relations, 131-135
revealing shape through, 239-241
text data to numeric data, 317
and timestamps, 179

transposed matrix, 112
true negative rate, 514

TSV (tab-separated value) file format, 142
Tukey, John, 195
tuning of smoothing techniques, 249
tuples, relations, 118
type conversion, 178
tz_convert() method, 297

U
unequal sampling, 266
unit nonresponse bias, 21
univariate plots, limitations of pairing, 212
unstack() method, dataframe, 125
update_layout() method, 273
update_yaxes() method, 273
urn model, 23, 28-36

bootstrapping, 442-446
Pennsylvania poll voters, 38-40
randomized controlled vaccine trial, 43-46
sampling designs, 30-35
sampling distribution of statistic, 32-35
simulating sampling distribution, 33-36
simulation with hypergeometric distribu‐

tion, 35-36
theory for inference and prediction,

431-433, 440-446, 456-462, 467
variance in, 458-462

US Bureau of Labor Statistics income dataset,
254-256

UTF-8, 146

V
vaccine randomized trial simulation, 27, 43-46,

434, 439-441
value_counts() method, 94
VanderPlas, Jake, 63
variables and variable types

in EDA, 196-207
plotting categorical data with multiple vari‐

ables, 219
random variables, 459-462
straightening to reveal relationships,

242-244
visualizing relationships among, 211-232

variance
and bias, 22, 425-429
election poll bias example, 36-40
in urn model, 458-462
model, 467
and MSE, 59

572 | Index

variation, 19
air quality data, 298
air quality data, 48
model, 428
and prediction interval, 449
testing and intervals, 463
types of, 22-24

vector geometry, 385, 393
vector space, 386
vectorized operators versus apply() method,

111
Vega library, JavaScript, 278
Vega-Altair library, 278
violin plot, 213
visualization, data, 235-279

adding context, 170, 268-270
choosing scale to reveal structure, 235-244
clarity principles for plots, 254-263
classifier performance, 512-514
creating plots with plotly, 270-277
and data design, 263-268
grammar of graphics theory, 278
home sale prices example, 222-232
in EDA, 196
matplotlib library, 278
multivariate relationships, 211-220
plot types to analyze distribution, 207-211
smoothing and aggregating data, 245-254
variable relationships, 211-232

W
waiting time paradox (bus arrival), 63
wc (word count) tool, 153

weighing a donkey case study, 471-491
assessment of model, 488-490
exploring, 477-481
modeling, 481-490
question and scope, 471
wrangling and transforming, 472-477

weights (see parameters)
weights (wt) in data tables, 159
WHERE clause, SQL, 124
WHERE keyword, relations filters, 119-121
whitespace-separated file format, 142
Wikipedia contributors, selecting awards, 23
wildcard character, 323
Wilkinson, Lee, 278
wind-damaged trees dataset, 496-498
windthrow, 496
WITH clause, SQL, 133
word vectors, 332

X
xarray package, 338
XML (eXtensible Markup Language), 145,

353-355
XPath expressions, 358-360

Y
y- and x-value axis smoothing, 248

Z
zero, including, to reveal structure, 237-238
zero-one error, 498

Index | 573

About the Authors
Sam Lau is an assistant teaching professor in the Halıcıoğlu Data Science Institute at
University of California, San Diego. He has a decade of teaching experience and hel‐
ped to design and teach flagship data science courses at UC Berkeley and UC San
Diego. His research creates novel interfaces for learning and teaching data science,
including the popular Pandas Tutor tool, which serves over 40,000 people per year.

Joseph (Joey) Gonzalez is an associate professor in the EECS department at the Uni‐
versity of California, Berkeley, and a founding member of the UC Berkeley RISE Lab.
His research interests are at the intersection of machine learning and data systems,
including dynamic deep neural networks for transfer learning, accelerated deep
learning for high-resolution computer vision, and software platforms for autono‐
mous vehicles. Joey is also cofounder of Turi Inc. (formerly GraphLab), which was
based on his work on the GraphLab and PowerGraph systems. Turi was recently
acquired by Apple Inc.

Deborah (Deb) Nolan is professor emerita of statistics and associate dean for under‐
graduates in the College of Computing, Data Science, and Society at the University of
California, Berkeley, where she held the Zaffaroni Family Chair in Undergraduate
Education. Her research has involved the empirical process, high-dimensional mod‐
eling, and, more recently, technology in education and reproducible research. Her
pedagogical approach connects research, practice, and education, and she is coauthor
of four textbooks: Stat Labs, Teaching Statistics, Data Science in R, and Communicating
with Data.

Colophon
The animal on the cover of Learning Data Science is an edible dormouse (Glis glis). As
you might suspect, these creatures have wound up in human cuisine. The edible dor‐
mouse was served grilled as a delicacy in ancient Rome and is still consumed today in
Croatia and Slovenia. Edible dormice have squirrel-like bodies with small ears, short
legs, large feet, and long, bushy tails. Their front feet have four digits and their hind
feet have five. They are predominantly covered in gray to gray-brown fur with white
underbellies. Their feet have naked soles that secrete a sticky substance that enables
climbing.

These nocturnal creatures spend most of their time in trees. They can be found across
Europe and in parts of western and central Asia. While the IUCN categorizes edible
dormice as a species of Least Concern, they are threatened by illegal hunting and hab‐
itat loss. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world. The cover illustration is by Karen Montgomery, based on an
antique line engraving from Lydekker’s Royal Natural History.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://www.oreilly.com/

	Cover
	Copyright
	Table of Contents
	Preface
	Expected Background Knowledge
	Organization of the Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. The Data Science Lifecycle
	Chapter 1. The Data Science Lifecycle
	The Stages of the Lifecycle
	Examples of the Lifecycle
	Summary

	Chapter 2. Questions and Data Scope
	Big Data and New Opportunities
	Example: Google Flu Trends

	Target Population, Access Frame, and Sample
	Example: What Makes Members of an Online Community Active?
	Example: Who Will Win the Election?
	Example: How Do Environmental Hazards Relate to an Individual’s Health?

	Instruments and Protocols
	Measuring Natural Phenomena
	Example: What Is the Level of CO2 in the Air?

	Accuracy
	Types of Bias
	Types of Variation

	Summary

	Chapter 3. Simulation and Data Design
	The Urn Model
	Sampling Designs
	Sampling Distribution of a Statistic
	Simulating the Sampling Distribution
	Simulation with the Hypergeometric Distribution

	Example: Simulating Election Poll Bias and Variance
	The Pennsylvania Urn Model
	An Urn Model with Bias
	Conducting Larger Polls

	Example: Simulating a Randomized Trial for a Vaccine
	Scope
	The Urn Model for Random Assignment

	Example: Measuring Air Quality
	Summary

	Chapter 4. Modeling with Summary Statistics
	The Constant Model
	Minimizing Loss
	Mean Absolute Error
	Mean Squared Error
	Choosing Loss Functions

	Summary

	Chapter 5. Case Study: Why Is My Bus Always Late?
	Question and Scope
	Data Wrangling
	Exploring Bus Times
	Modeling Wait Times
	Summary

	Part II. Rectangular Data
	Chapter 6. Working with Dataframes Using pandas
	Subsetting
	Data Scope and Question
	Dataframes and Indices
	Slicing
	Filtering Rows
	Example: How Recently Has Luna Become a Popular Name?

	Aggregating
	Basic Group-Aggregate
	Grouping on Multiple Columns
	Custom Aggregation Functions
	Pivoting

	Joining
	Inner Joins
	Left, Right, and Outer Joins
	Example: Popularity of NYT Name Categories

	Transforming
	Apply
	Example: Popularity of “L” Names
	The Price of Apply

	How Are Dataframes Different from Other Data Representations?
	Dataframes and Spreadsheets
	Dataframes and Matrices
	Dataframes and Relations

	Summary

	Chapter 7. Working with Relations Using SQL
	Subsetting
	SQL Basics: SELECT and FROM
	What’s a Relation?
	Slicing
	Filtering Rows
	Example: How Recently Has Luna Become a Popular Name?

	Aggregating
	Basic Group-Aggregate Using GROUP BY
	Grouping on Multiple Columns
	Other Aggregation Functions

	Joining
	Inner Joins
	Left and Right Joins
	Example: Popularity of NYT Name Categories

	Transforming and Common Table Expressions
	SQL Functions
	Multistep Queries Using a WITH Clause
	Example: Popularity of “L” Names

	Summary

	Part III. Understanding The Data
	Chapter 8. Wrangling Files
	Data Source Examples
	Drug Abuse Warning Network (DAWN) Survey
	San Francisco Restaurant Food Safety

	File Formats
	Delimited Format
	Fixed-Width Format
	Hierarchical Formats
	Loosely Formatted Text

	File Encoding
	File Size
	The Shell and Command-Line Tools
	Table Shape and Granularity
	Granularity of Restaurant Inspections and Violations
	DAWN Survey Shape and Granularity

	Summary

	Chapter 9. Wrangling Dataframes
	Example: Wrangling CO2 Measurements from the Mauna Loa Observatory
	Quality Checks
	Addressing Missing Data
	Reshaping the Data Table

	Quality Checks
	Quality Based on Scope
	Quality of Measurements and Recorded Values
	Quality Across Related Features
	Quality for Analysis
	Fixing the Data or Not

	Missing Values and Records
	Transformations and Timestamps
	Transforming Timestamps
	Piping for Transformations

	Modifying Structure
	Example: Wrangling Restaurant Safety Violations
	Narrowing the Focus
	Aggregating Violations
	Extracting Information from Violation Descriptions

	Summary

	Chapter 10. Exploratory Data Analysis
	Feature Types
	Example: Dog Breeds
	Transforming Qualitative Features
	The Importance of Feature Types

	What to Look For in a Distribution
	What to Look For in a Relationship
	Two Quantitative Features
	One Qualitative and One Quantitative Variable
	Two Qualitative Features

	Comparisons in Multivariate Settings
	Guidelines for Exploration
	Example: Sale Prices for Houses
	Understanding Price
	What Next?
	Examining Other Features
	Delving Deeper into Relationships
	Fixing Location
	EDA Discoveries

	Summary

	Chapter 11. Data Visualization
	Choosing Scale to Reveal Structure
	Filling the Data Region
	Including Zero
	Revealing Shape Through Transformations
	Banking to Decipher Relationships
	Revealing Relationships Through Straightening

	Smoothing and Aggregating Data
	Smoothing Techniques to Uncover Shape
	Smoothing Techniques to Uncover Relationships and Trends
	Smoothing Techniques Need Tuning
	Reducing Distributions to Quantiles
	When Not to Smooth

	Facilitating Meaningful Comparisons
	Emphasize the Important Difference
	Ordering Groups
	Avoid Stacking
	Selecting a Color Palette
	Guidelines for Comparisons in Plots

	Incorporating the Data Design
	Data Collected Over Time
	Observational Studies
	Unequal Sampling
	Geographic Data

	Adding Context
	Example: 100m Sprint Times

	Creating Plots Using plotly
	Figure and Trace Objects
	Modifying Layout
	Plotting Functions
	Annotations

	Other Tools for Visualization
	matplotlib
	Grammar of Graphics

	Summary

	Chapter 12. Case Study: How Accurate Are Air Quality Measurements?
	Question, Design, and Scope
	Finding Collocated Sensors
	Wrangling the List of AQS Sites
	Wrangling the List of PurpleAir Sites
	Matching AQS and PurpleAir Sensors

	Wrangling and Cleaning AQS Sensor Data
	Checking Granularity
	Removing Unneeded Columns
	Checking the Validity of Dates
	Checking the Quality of PM2.5 Measurements

	Wrangling PurpleAir Sensor Data
	Checking the Granularity
	Handling Missing Values

	Exploring PurpleAir and AQS Measurements
	Creating a Model to Correct PurpleAir Measurements
	Summary

	Part IV. Other Data Sources
	Chapter 13. Working with Text
	Examples of Text and Tasks
	Convert Text into a Standard Format
	Extract a Piece of Text to Create a Feature
	Transform Text into Features
	Text Analysis

	String Manipulation
	Converting Text to a Standard Format with Python String Methods
	String Methods in pandas
	Splitting Strings to Extract Pieces of Text

	Regular Expressions
	Concatenation of Literals
	Quantifiers
	Alternation and Grouping to Create Features
	Reference Tables

	Text Analysis
	Summary

	Chapter 14. Data Exchange
	NetCDF Data
	JSON Data
	HTTP
	REST
	XML, HTML, and XPath
	Example: Scraping Race Times from Wikipedia
	XPath
	Example: Accessing Exchange Rates from the ECB

	Summary

	Part V. Linear Modeling
	Chapter 15. Linear Models
	Simple Linear Model
	Example: A Simple Linear Model for Air Quality
	Interpreting Linear Models
	Assessing the Fit

	Fitting the Simple Linear Model
	Multiple Linear Model
	Fitting the Multiple Linear Model
	Example: Where Is the Land of Opportunity?
	Explaining Upward Mobility Using Commute Time
	Relating Upward Mobility Using Multiple Variables

	Feature Engineering for Numeric Measurements
	Feature Engineering for Categorical Measurements
	Summary

	Chapter 16. Model Selection
	Overfitting
	Example: Energy Consumption

	Train-Test Split
	Cross-Validation
	Regularization
	Model Bias and Variance
	Summary

	Chapter 17. Theory for Inference and Prediction
	Distributions: Population, Empirical, Sampling
	Basics of Hypothesis Testing
	Example: A Rank Test to Compare Productivity of Wikipedia Contributors
	Example: A Test of Proportions for Vaccine Efficacy

	Bootstrapping for Inference
	Basics of Confidence Intervals
	Basics of Prediction Intervals
	Example: Predicting Bus Lateness
	Example: Predicting Crab Size
	Example: Predicting the Incremental Growth of a Crab

	Probability for Inference and Prediction
	Formalizing the Theory for Average Rank Statistics
	General Properties of Random Variables
	Probability Behind Testing and Intervals
	Probability Behind Model Selection

	Summary

	Chapter 18. Case Study: How to Weigh a Donkey
	Donkey Study Question and Scope
	Wrangling and Transforming
	Exploring
	Modeling a Donkey’s Weight
	A Loss Function for Prescribing Anesthetics
	Fitting a Simple Linear Model
	Fitting a Multiple Linear Model
	Bringing Qualitative Features into the Model
	Model Assessment

	Summary

	Part VI. Classification
	Chapter 19. Classification
	Example: Wind-Damaged Trees
	Modeling and Classification
	A Constant Model
	Examining the Relationship Between Size and Windthrow

	Modeling Proportions (and Probabilities)
	A Logistic Model
	Log Odds
	Using a Logistic Curve

	A Loss Function for the Logistic Model
	From Probabilities to Classification
	The Confusion Matrix
	Precision Versus Recall

	Summary

	Chapter 20. Numerical Optimization
	Gradient Descent Basics
	Minimizing Huber Loss
	Convex and Differentiable Loss Functions
	Variants of Gradient Descent
	Stochastic Gradient Descent
	Mini-Batch Gradient Descent
	Newton’s Method

	Summary

	Chapter 21. Case Study: Detecting Fake News
	Question and Scope
	Obtaining and Wrangling the Data
	Exploring the Data
	Exploring the Publishers
	Exploring Publication Date
	Exploring Words in Articles

	Modeling
	A Single-Word Model
	Multiple-Word Model
	Predicting with the tf-idf Transform

	Summary

	Bibliography
	Data Sources
	Index
	About the Authors
	Colophon

